The Prediction of Recurrence of Lumbar Disc Herniation at L5-S1 through Machine Learning Based on Endoscopic Discectomy <em>via</em> the Interlaminar Approach

医学 腰椎管狭窄症 经皮 体质指数 狭窄 椎间盘切除术 腰椎间盘突出症 Lasso(编程语言) 椎管狭窄 腰椎间盘疾病 外科 放射科 腰椎 内科学 计算机科学 万维网
作者
Jinyu Chen,Yanyan Fan,Peng Liu,Zhiming Cui,Jiajia Chen
出处
期刊:Journal of Visualized Experiments [MyJoVE Corporation]
卷期号: (221)
标识
DOI:10.3791/68550
摘要

This study aimed to develop machine learning (ML) models to predict the L5-S1 level recurrent lumbar disc herniation (rLDH) after percutaneous endoscopic interlaminar discectomy (PEID), a minimally invasive treatment for L5-S1 lumbar disc herniation. Data from 309 patients who underwent single-level L5-S1 PEID between January 2020 and June 2024, with at least 6 months of follow-up, were analyzed. Clinical records, preoperative imaging, and visual analog scale (VAS) scores were used. LASSO regression identified key predictors, and six ML models were built: support vector machine (SVM), decision tree (DT), adaptive boosting (ADA), light gradient boosting machine (LGBM), random forest (RF), and extreme gradient boosting (XGB). Among the patients, 10.7% experienced rLDH, defined as ≥60% VAS reduction followed by symptom recurrence and imaging confirmation. Key predictors included Body Mass Index (BMI), posterior disc height index (PDHI), spinal canal stenosis, disease duration, numbness or weakness, Modic changes, herniation type, and diabetes. The RF and XGB models performed best. Higher BMI, Higher PDHI, spinal canal stenosis, disease duration over six months, Modic changes, non-contained herniation, and diabetes increased rLDH risk. Variable importance was ranked for both models. Predicting rLDH preoperatively can enhance decision-making and reduce recurrence risk after PEID, with ML models improving accuracy and identifying critical risk factors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千里发布了新的文献求助10
1秒前
子云完成签到,获得积分10
1秒前
2秒前
乐乐乐完成签到,获得积分10
2秒前
在水一方应助是否采纳,获得10
3秒前
Raye完成签到,获得积分10
4秒前
5秒前
小蘑菇应助唐很甜采纳,获得10
5秒前
5秒前
lalala完成签到,获得积分10
5秒前
5秒前
5秒前
笑点低剑封完成签到,获得积分10
6秒前
6秒前
凌麟发布了新的文献求助10
6秒前
dd完成签到 ,获得积分10
8秒前
帕尼尼发布了新的文献求助10
8秒前
8秒前
贝贝发布了新的文献求助20
8秒前
8秒前
夕月发布了新的文献求助10
9秒前
FashionBoy应助活泼天晴采纳,获得10
9秒前
顺利的飞荷完成签到,获得积分0
9秒前
10秒前
11秒前
bkagyin应助烂想家采纳,获得10
12秒前
12秒前
13秒前
李允广发布了新的文献求助10
13秒前
英俊的铭应助黄豆酱采纳,获得10
13秒前
善学以致用应助砍柴少年采纳,获得10
14秒前
rgsrgrs发布了新的文献求助10
14秒前
李啟完成签到,获得积分10
14秒前
14秒前
14秒前
CodeCraft应助接受饼干采纳,获得10
14秒前
臻灏发布了新的文献求助10
15秒前
森诺完成签到 ,获得积分10
15秒前
15秒前
千里完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721955
求助须知:如何正确求助?哪些是违规求助? 5267962
关于积分的说明 15295489
捐赠科研通 4871144
什么是DOI,文献DOI怎么找? 2615838
邀请新用户注册赠送积分活动 1565623
关于科研通互助平台的介绍 1522543