非阻塞I/O
探测器
噪音(视频)
粒子探测器
辐射
分辨率(逻辑)
能量(信号处理)
材料科学
光电子学
物理
光学
化学
计算机科学
图像(数学)
人工智能
催化作用
量子力学
生物化学
作者
Xinyi Pei,X.Q. Meng,Lei Ren,Yuncheng Han,Na Sun,Weizong Xu,Fangfang Ren,Dawei Yan,Yi Yang,Shulin Gu,Rong Zhang,Jiandong Ye
摘要
In this Letter, we investigated the noise sources in NiO/β-Ga2O3 p–n heterojunctions and demonstrated the field management for noise suppression to enhance radiation detection performance. Combining TCAD simulations and experimental electrical analysis, we identified two primary noise sources, including shot noise originating from carrier density fluctuations and non-uniform carrier drift velocities, and flicker noise associated with localized carrier trapping centers. To mitigate these noise contributions, we developed a large-area (1 × 1 mm2) NiO/β-Ga2O3 p–n heterojunction detector incorporating an amorphous high-k dielectric BaTiO3 layer as the field-plate (FP) structure. By effectively redistributing the electric field, the FP implementation minimizes field crowding at device edges, reduces leakage current, and enhances carrier transport uniformity, thereby leading to significant background noise suppression. Consequently, the detector achieves an improved energy resolution of 4.3% for α-particle detection, surpassing the previously reported Ga2O3 radiation detectors. These findings deepen the fundamental understanding of noise mechanisms in β-Ga2O3 devices and demonstrate a robust field-engineering strategy for achieving low-noise and high-energy-resolution radiation detectors.
科研通智能强力驱动
Strongly Powered by AbleSci AI