Steel surface defect detection algorithm in complex background scenarios

算法 曲面(拓扑) 计算机科学 数学 几何学
作者
BaiTing Zhao,Y. C. Chen,XiaoFen Jia,TianBing Ma
出处
期刊:Measurement [Elsevier BV]
卷期号:237: 115189-115189 被引量:16
标识
DOI:10.1016/j.measurement.2024.115189
摘要

Detecting surface defects on steel poses a significant challenge attributed to factors such as poor contrast, diverse defect types, complex background clutter, and noise interference present in images of steel surface defects. Current detection techniques face challenges in quickly and accurately identifying defects within complex backgrounds. To address the deployment of high-precision detection models on edge devices with limited resources, particularly for identifying steel surface defects, this study introduces a Multi-Scale Adaptive Fusion (MSAF) YOLOv8n defect detection algorithm designed for complex backgrounds. This algorithm effectively balances detection speed and accuracy. Firstly, a Multi-Scale Adaptive Fusion Block (MS-AFB) is proposed for the extraction of multi-scale features. Secondly, a Dynamic Coordinate Attention Ghostconv Space Pooling Pyramid-fast Cross-stage Partial Convolutional (DCA-GSPPFCSPC) is devised to significantly improve detection accuracy. Furthermore, the detection head has been redesigned utilizing Lightweight Multi-scale Convolutional (LMSC) approach, and an Adaptive Pyramid Receptive Field Block (AP-RFB) has been introduced to improve the receptive field efficiently. Meanwhile, Normalized Weighted Distance (NWD) and Weighted Intersection over Union (WIoU) are employed as the boundary box loss functions, serving as substitutes for Complete Intersection over Union (CIoU) loss function with a ratio of 2:8. The experimental results obtained from the improved Northeastern University Defect Dataset (NEU-DET) dataset demonstrate that MSAF-YOLOv8n model, despite having 40.4 % of the parameters and 28.8 % of Floating Point Operations (FLOPs) of YOLOv8s, achieves a [email protected] that is 0.9 % higher than that of YOLOv8s. Additionally, MSAF-YOLOv8n demonstrates robust generalization capabilities in Pascal VOC2007, self-constructed datasets, and various other datasets. Subsequently, the model is implemented on embedded systems, namely Jeston TX2 NX and Orange Pi 5+, both of which demonstrate real-time detection capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bingbing发布了新的文献求助10
2秒前
重要的哈密瓜完成签到 ,获得积分10
3秒前
3秒前
cc完成签到,获得积分10
4秒前
科目三应助星野采纳,获得10
4秒前
老迟到的可兰完成签到 ,获得积分10
4秒前
5秒前
6秒前
yuyihuii发布了新的文献求助10
6秒前
8秒前
zhang发布了新的文献求助10
8秒前
希希完成签到,获得积分10
8秒前
智智发布了新的文献求助10
9秒前
我是老大应助自觉紫安采纳,获得10
9秒前
Hey发布了新的文献求助10
10秒前
chen发布了新的文献求助10
10秒前
文艺的匪完成签到,获得积分10
10秒前
伶俐书雁发布了新的文献求助10
10秒前
bkagyin应助bingbing采纳,获得10
10秒前
nana完成签到,获得积分10
11秒前
11秒前
11秒前
13秒前
14秒前
gao完成签到,获得积分10
14秒前
heli发布了新的文献求助10
15秒前
侃侃发布了新的文献求助30
15秒前
无限的语芹完成签到,获得积分10
16秒前
追风e族发布了新的文献求助10
16秒前
bkagyin应助一朵采纳,获得10
16秒前
rid4iuclous2完成签到,获得积分10
16秒前
16秒前
大个应助学术羊采纳,获得10
19秒前
伶俐书雁完成签到,获得积分10
20秒前
21秒前
自觉紫安发布了新的文献求助10
23秒前
sansan完成签到 ,获得积分10
23秒前
23秒前
南北完成签到,获得积分10
24秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
Advanced Introduction to US Civil Liberties 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825282
求助须知:如何正确求助?哪些是违规求助? 3367593
关于积分的说明 10446446
捐赠科研通 3086915
什么是DOI,文献DOI怎么找? 1698354
邀请新用户注册赠送积分活动 816717
科研通“疑难数据库(出版商)”最低求助积分说明 769937