Dual-Energy-Barrier Stable Superhydrophobic Structures for Long Icing Delay

结冰 材料科学 亚稳态 纳米技术 屏障激活 化学物理 化学 分子 物理 气象学 有机化学
作者
Lizhong Wang,Daizhou Li,Guochen Jiang,Xinyu Hu,Rui Peng,Ziyan Song,Hongjun Zhang,Peixun Fan,Minlin Zhong
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (19): 12489-12502 被引量:81
标识
DOI:10.1021/acsnano.4c02051
摘要

Using superhydrophobic surfaces (SHSs) with the water-repellent Cassie-Baxter (CB) state is widely acknowledged as an effective approach for anti-icing performances. Nonetheless, the CB state is susceptible to diverse physical phenomena (e.g., vapor condensation, gas contraction, etc.) at low temperatures, resulting in the transition to the sticky Wenzel state and the loss of anti-icing capabilities. SHSs with various micronanostructures have been empirically examined for enhancing the CB stability; however, the energy barrier transits from the metastable CB state to the stable Wenzel state and thus the CB stability enhancement is currently not enough to guarantee a well and appliable anti-icing performance at low temperatures. Here, we proposed a dual-energy-barrier design strategy on superhydrophobic micronanostructures. Rather than the typical single energy barrier of the conventional CB-to-Wenzel transition, we introduced two CB states (i.e., CB I and CB II), where the state transition needed to go through CB I and CB II then to Wenzel state, thus significantly improving the entire CB stability. We applied ultrafast laser to fabricate this dual-energy-barrier micronanostructures, established a theoretical framework, and performed a series of experiments. The anti-icing performances were exhibited with long delay icing times (over 27,000 s) and low ice-adhesion strengths (0.9 kPa). The kinetic mechanism underpinning the enhanced CB anti-icing stability was elucidated and attributed to the preferential liquid pinning in the shallow closed structures, enabling the higher CB-Wenzel transition energy barrier to sustain the CB state. Comprehensive durability tests further corroborated the potentials of the designed dual-energy-barrier structures for anti-icing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PCX完成签到,获得积分10
1秒前
彭于晏应助Ziyi_Xu采纳,获得10
1秒前
2秒前
2秒前
reai完成签到,获得积分10
2秒前
LL完成签到,获得积分10
3秒前
等待的寒安完成签到,获得积分20
3秒前
wellscurry完成签到,获得积分10
4秒前
4秒前
科研通AI6.1应助大强采纳,获得10
4秒前
nanomolar发布了新的文献求助10
5秒前
5秒前
王士钰完成签到,获得积分10
5秒前
youzi完成签到,获得积分10
5秒前
方也日月完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
wellscurry发布了新的文献求助10
7秒前
天梦星玄完成签到,获得积分10
8秒前
8秒前
8秒前
没有神的过往完成签到,获得积分10
8秒前
Jasper应助勤劳山灵采纳,获得10
8秒前
星辰大海应助XHW采纳,获得10
9秒前
9秒前
10秒前
wdasdas发布了新的文献求助10
10秒前
10秒前
酷波er应助Yayaya采纳,获得10
11秒前
活泼的觅云完成签到,获得积分10
11秒前
11秒前
cqbrain123完成签到,获得积分10
11秒前
11111完成签到,获得积分10
12秒前
13秒前
平平无奇打工人完成签到 ,获得积分10
13秒前
英勇滑板发布了新的文献求助10
14秒前
lbh发布了新的文献求助10
14秒前
14秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736268
求助须知:如何正确求助?哪些是违规求助? 5365084
关于积分的说明 15332807
捐赠科研通 4880197
什么是DOI,文献DOI怎么找? 2622681
邀请新用户注册赠送积分活动 1571600
关于科研通互助平台的介绍 1528453