Development of an alcoholic liver disease model for drug evaluation from human induced pluripotent stem cell-derived liver organoids

类有机物 诱导多能干细胞 酒精性肝病 药品 干细胞 人肝 药物发现 药物开发 生物 癌症研究 医学 计算生物学 药理学 细胞生物学 生物信息学 内科学 生物化学 胚胎干细胞 基因 肝硬化 体外
作者
Zhiwei Feng,Bingrui Zhou,Qizhi Shuai,Yunliang Wei,Ning Jin,Xiaoling Wang,Hong Zhao,Zhizhen Liu,Jun Xu,Jianbing Mu,Jun Xie
出处
期刊:Acta Biochimica et Biophysica Sinica [Oxford University Press]
卷期号:56 (10): 1460-1472 被引量:3
标识
DOI:10.3724/abbs.2024074
摘要

Alcoholic liver disease (ALD) poses a significant health challenge, so comprehensive research efforts to improve our understanding and treatment strategies are needed. However, the development of effective treatments is hindered by the limitation of existing liver disease models. Liver organoids, characterized by their cellular complexity and three-dimensional (3D) tissue structure closely resembling the human liver, hold promise as ideal models for liver disease research. In this study, we use a meticulously designed protocol involving the differentiation of human induced pluripotent stem cells (hiPSCs) into liver organoids. This process incorporates a precise combination of cytokines and small molecule compounds within a 3D culture system to guide the differentiation process. Subsequently, these differentiated liver organoids are subject to ethanol treatment to induce ALD, thus establishing a disease model. A rigorous assessment through a series of experiments reveals that this model partially recapitulates key pathological features observed in clinical ALD, including cellular mitochondrial damage, elevated cellular reactive oxygen species (ROS) levels, fatty liver, and hepatocyte necrosis. In addition, this model offers potential use in screening drugs for ALD treatment. Overall, the liver organoid model of ALD, which is derived from hiPSC differentiation, has emerged as an invaluable platform for advancing our understanding and management of ALD in clinical settings.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1908679476完成签到,获得积分20
刚刚
1秒前
説書人完成签到,获得积分10
1秒前
ZZ发布了新的文献求助10
1秒前
木昆完成签到 ,获得积分10
1秒前
3秒前
3秒前
jack_kunn发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
隋嫣然发布了新的文献求助10
8秒前
如意安青发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
科目三应助小左左采纳,获得10
9秒前
木木发布了新的文献求助10
10秒前
今后应助欢城采纳,获得10
10秒前
12秒前
xiaoyu完成签到,获得积分10
12秒前
12秒前
LongH2完成签到,获得积分10
13秒前
原子界发布了新的文献求助10
13秒前
14秒前
英姑应助柚子采纳,获得20
15秒前
16秒前
16秒前
z12完成签到,获得积分20
16秒前
16秒前
天天快乐应助ahau_zhang采纳,获得10
17秒前
充电宝应助启玄采纳,获得10
17秒前
隋嫣然完成签到,获得积分10
18秒前
炸毛可乐发布了新的文献求助10
18秒前
zhuzhu完成签到 ,获得积分10
18秒前
占糜完成签到,获得积分20
19秒前
搜集达人应助9一休采纳,获得30
19秒前
繁星发布了新的文献求助10
20秒前
小五发布了新的文献求助10
20秒前
20秒前
20秒前
22秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611281
求助须知:如何正确求助?哪些是违规求助? 4695786
关于积分的说明 14888409
捐赠科研通 4725148
什么是DOI,文献DOI怎么找? 2545628
邀请新用户注册赠送积分活动 1510217
关于科研通互助平台的介绍 1473156