离散化
多孔介质
数学
达西定律
流量(数学)
曲线坐标
不连续性分类
一般化
基质(化学分析)
间断伽辽金法
数学分析
几何学
牙石(牙科)
机械
多孔性
地质学
岩土工程
有限元法
物理
材料科学
医学
牙科
复合材料
热力学
作者
Samuel Burbulla,M. Hörl,Christian Rohde
摘要
.We study single-phase flow in a fractured porous medium at a macroscopic scale that allows us to model fractures individually. The flow is governed by Darcy's law in both fractures and a porous matrix. We derive a new mixed-dimensional model, where fractures are represented by \((n-1)\)-dimensional interfaces between \(n\)-dimensional subdomains for \(n\ge 2\). In particular, we suggest a generalization of the model in [V. Martin, J. Jaffré, and J. E. Roberts, SIAM J. Sci. Comput., 26 (2005), pp. 1667–1691] by accounting for asymmetric fractures with spatially varying aperture. Thus, the new model is particularly convenient for the description of surface roughness or for modeling curvilinear or winding fractures. The wellposedness of the new model is proven under appropriate conditions. Further, we formulate a discontinuous Galerkin discretization of the new model and validate the model by performing two- and three-dimensional numerical experiments.Keywordsfracturesflow in porous mediavarying aperturediscontinuous GalerkinMSC codes76S0535J2035J2565N30
科研通智能强力驱动
Strongly Powered by AbleSci AI