Are Transformers Effective for Time Series Forecasting?

变压器 计算机科学 数据挖掘 时间序列 人工智能 机器学习 工程类 电压 电气工程
作者
Ailing Zeng,Muxi Chen,Lei Zhang,Qiang Xu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (9): 11121-11128 被引量:913
标识
DOI:10.1609/aaai.v37i9.26317
摘要

Recently, there has been a surge of Transformer-based solutions for the long-term time series forecasting (LTSF) task. Despite the growing performance over the past few years, we question the validity of this line of research in this work. Specifically, Transformers is arguably the most successful solution to extract the semantic correlations among the elements in a long sequence. However, in time series modeling, we are to extract the temporal relations in an ordered set of continuous points. While employing positional encoding and using tokens to embed sub-series in Transformers facilitate preserving some ordering information, the nature of the permutation-invariant self-attention mechanism inevitably results in temporal information loss. To validate our claim, we introduce a set of embarrassingly simple one-layer linear models named LTSF-Linear for comparison. Experimental results on nine real-life datasets show that LTSF-Linear surprisingly outperforms existing sophisticated Transformer-based LTSF models in all cases, and often by a large margin. Moreover, we conduct comprehensive empirical studies to explore the impacts of various design elements of LTSF models on their temporal relation extraction capability. We hope this surprising finding opens up new research directions for the LTSF task. We also advocate revisiting the validity of Transformer-based solutions for other time series analysis tasks (e.g., anomaly detection) in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助闷骚采纳,获得30
刚刚
刚刚
1秒前
1秒前
2秒前
Hsu发布了新的文献求助10
2秒前
2秒前
顾矜应助少艾采纳,获得10
3秒前
4秒前
蔡宇滔发布了新的文献求助10
5秒前
隐形曼青应助jing采纳,获得10
5秒前
6秒前
大个应助Hsu采纳,获得10
7秒前
阳佟元芹发布了新的文献求助10
7秒前
lsktoast发布了新的文献求助10
7秒前
7秒前
8秒前
忧虑的靖巧完成签到 ,获得积分10
8秒前
SciGPT应助胡萝卜采纳,获得10
8秒前
9秒前
天天快乐应助传统的雨文采纳,获得10
10秒前
BioGO完成签到,获得积分10
11秒前
nysyty发布了新的文献求助10
11秒前
14秒前
kkkkkk发布了新的文献求助10
14秒前
14秒前
摩卡发布了新的文献求助10
15秒前
Orange应助种花兔采纳,获得10
16秒前
16秒前
16秒前
脑洞疼应助mmd采纳,获得10
16秒前
17秒前
17秒前
坚定的老六完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
刘旭发布了新的文献求助10
19秒前
Dean应助GTY采纳,获得250
19秒前
123发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Washback of the College Entrance English Exam on student perceptions of learning in a Chinese rural city 1000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4564853
求助须知:如何正确求助?哪些是违规求助? 3988852
关于积分的说明 12350954
捐赠科研通 3660042
什么是DOI,文献DOI怎么找? 2016963
邀请新用户注册赠送积分活动 1051355
科研通“疑难数据库(出版商)”最低求助积分说明 939109