已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Knowledge Graph Embedding Based on Graph Neural Network

计算机科学 理论计算机科学 图形属性 图形 人工智能 电压图 折线图
作者
Shuang Liang
标识
DOI:10.1109/icde55515.2023.00379
摘要

The representation of semantic information pertaining to the real world has been active research for some time now. Among the available methods, knowledge graphs have emerged as a widely accepted approach. Meanwhile, graph neural networks (GNNs) have demonstrated excellent performance in embedding graph-based information. Given the natural graph structure of knowledge graphs, employing GNNs to embed them is expected to yield a more interpretable and trustworthy representation of the learned knowledge. In this paper, we propose three customized GNNs for different scenarios of knowledge graph representation, including traditional, multimodal, and uncertain knowledge graphs. In the traditional knowledge graph scenario, we present a graph self-supervised learning method, named deep relation graph infomax (DRGI), which incorporates both the complete graph structure information and semantic information. In the multimodal knowledge graph scenario, we introduce a novel network, named hyper-node relational graph attention network (HRGAT), which combines different modal information with graph structure information for a more precise representation of multimodal knowledge graphs. In the uncertain knowledge graph scenario, we define a novel message-passing paradigm with box embedding, named box graph neural network (BGNN). BGNN leverages both the graph structure information of uncertain knowledge graphs and the probabilistic semantics of box embedding. To validate the effectiveness of our proposed methods, we conduct a series of experiments and report the results. We also discuss possible future work in GNN-based knowledge graph embedding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
直率小土豆完成签到,获得积分20
1秒前
0000完成签到 ,获得积分10
1秒前
3秒前
zk完成签到,获得积分10
3秒前
4秒前
6秒前
wind发布了新的文献求助10
10秒前
寒鸦少年发布了新的文献求助10
11秒前
不打烊完成签到 ,获得积分10
17秒前
chiyudoubao完成签到 ,获得积分10
19秒前
DreamRunner0410完成签到 ,获得积分10
22秒前
白开水完成签到,获得积分20
22秒前
22秒前
24秒前
25秒前
外向芹菜完成签到 ,获得积分10
25秒前
27秒前
28秒前
orixero应助白开水采纳,获得30
28秒前
Dc发布了新的文献求助10
29秒前
华仔应助he采纳,获得10
29秒前
kokodayou发布了新的文献求助10
30秒前
郑总完成签到 ,获得积分10
31秒前
wjnjennifer发布了新的文献求助10
32秒前
35秒前
37秒前
he发布了新的文献求助10
41秒前
孙燕应助Dc采纳,获得10
41秒前
41秒前
43秒前
白开水发布了新的文献求助30
48秒前
echo完成签到,获得积分10
49秒前
小蘑菇应助he采纳,获得10
49秒前
Ring完成签到 ,获得积分10
50秒前
顺利寄文完成签到 ,获得积分10
51秒前
51秒前
licheng完成签到,获得积分10
51秒前
0514gr完成签到,获得积分10
56秒前
小二郎应助寒鸦少年采纳,获得30
56秒前
huazhangchina完成签到 ,获得积分10
56秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840608
求助须知:如何正确求助?哪些是违规求助? 3382636
关于积分的说明 10525610
捐赠科研通 3102399
什么是DOI,文献DOI怎么找? 1708788
邀请新用户注册赠送积分活动 822685
科研通“疑难数据库(出版商)”最低求助积分说明 773472