GREIL-Crowds: Crowd Simulation with Deep Reinforcement Learning and Examples

人群 强化学习 计算机科学 人群模拟 多样性(控制论) 人群心理 人工智能 代表(政治) 任务(项目管理) 行人 状态空间 功能(生物学) 离群值 国家(计算机科学) 机器学习 人机交互 计算机安全 工程类 数学 统计 系统工程 进化生物学 政治 政治学 运输工程 法学 生物 算法
作者
Panayiotis Charalambous,Julien Pettré,Vassilis Vassiliades,Yiorgos Chrysanthou,Nuria Pelechano
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:42 (4): 1-15 被引量:19
标识
DOI:10.1145/3592459
摘要

Simulating crowds with realistic behaviors is a difficult but very important task for a variety of applications. Quantifying how a person balances between different conflicting criteria such as goal seeking, collision avoidance and moving within a group is not intuitive, especially if we consider that behaviors differ largely between people. Inspired by recent advances in Deep Reinforcement Learning, we propose Guided REinforcement Learning (GREIL) Crowds, a method that learns a model for pedestrian behaviors which is guided by reference crowd data. The model successfully captures behaviors such as goal seeking, being part of consistent groups without the need to define explicit relationships and wandering around seemingly without a specific purpose. Two fundamental concepts are important in achieving these results: (a) the per agent state representation and (b) the reward function. The agent state is a temporal representation of the situation around each agent. The reward function is based on the idea that people try to move in situations/states in which they feel comfortable in. Therefore, in order for agents to stay in a comfortable state space, we first obtain a distribution of states extracted from real crowd data; then we evaluate states based on how much of an outlier they are compared to such a distribution. We demonstrate that our system can capture and simulate many complex and subtle crowd interactions in varied scenarios. Additionally, the proposed method generalizes to unseen situations, generates consistent behaviors and does not suffer from the limitations of other data-driven and reinforcement learning approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耽溺关注了科研通微信公众号
1秒前
战战完成签到,获得积分10
1秒前
2秒前
张明浪完成签到,获得积分10
2秒前
2秒前
科研通AI5应助逝月采纳,获得10
3秒前
5秒前
gzy关注了科研通微信公众号
5秒前
NexusExplorer应助光头强采纳,获得10
5秒前
西梅完成签到,获得积分20
6秒前
黑妹发布了新的文献求助10
8秒前
MchemG应助菠萝蜜采纳,获得10
8秒前
Wency发布了新的文献求助30
8秒前
8秒前
田様应助KK采纳,获得10
9秒前
9秒前
9秒前
han完成签到 ,获得积分10
10秒前
10秒前
cloudy发布了新的文献求助10
10秒前
傻傻的夜柳完成签到 ,获得积分20
13秒前
三个哈卡发布了新的文献求助10
14秒前
zhanyuji发布了新的文献求助10
15秒前
Skuld应助玖玖采纳,获得10
15秒前
斯文冷亦完成签到 ,获得积分10
15秒前
sunhuaqiang发布了新的文献求助10
15秒前
逝月发布了新的文献求助10
15秒前
cloudy完成签到,获得积分10
16秒前
Wency完成签到,获得积分10
18秒前
天天发布了新的文献求助10
18秒前
lq66a6发布了新的文献求助10
18秒前
Lucas应助WN采纳,获得10
19秒前
JamesPei应助铁甲小宝采纳,获得10
19秒前
研友_nxwbrL完成签到,获得积分10
19秒前
21秒前
shangx发布了新的文献求助10
21秒前
隐形曼青应助Wzebrafish采纳,获得10
22秒前
24秒前
科研通AI5应助顾志成采纳,获得10
25秒前
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795186
求助须知:如何正确求助?哪些是违规求助? 3340148
关于积分的说明 10298847
捐赠科研通 3056613
什么是DOI,文献DOI怎么找? 1677114
邀请新用户注册赠送积分活动 805194
科研通“疑难数据库(出版商)”最低求助积分说明 762391