Dehazing Ultrasound using Diffusion Models

计算机科学 薄雾 超声波 噪音(视频) 人工智能 医学诊断 计算机视觉 回声 成像体模 图像(数学) 放射科 医学 物理 气象学
作者
Tristan S. W. Stevens,F. Can Meral,Jason Yu,Iason Apostolakis,Jean-Luc Robert,Ruud J. G. van Sloun
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2307.11204
摘要

Echocardiography has been a prominent tool for the diagnosis of cardiac disease. However, these diagnoses can be heavily impeded by poor image quality. Acoustic clutter emerges due to multipath reflections imposed by layers of skin, subcutaneous fat, and intercostal muscle between the transducer and heart. As a result, haze and other noise artifacts pose a real challenge to cardiac ultrasound imaging. In many cases, especially with difficult-to-image patients such as patients with obesity, a diagnosis from B-Mode ultrasound imaging is effectively rendered unusable, forcing sonographers to resort to contrast-enhanced ultrasound examinations or refer patients to other imaging modalities. Tissue harmonic imaging has been a popular approach to combat haze, but in severe cases is still heavily impacted by haze. Alternatively, denoising algorithms are typically unable to remove highly structured and correlated noise, such as haze. It remains a challenge to accurately describe the statistical properties of structured haze, and develop an inference method to subsequently remove it. Diffusion models have emerged as powerful generative models and have shown their effectiveness in a variety of inverse problems. In this work, we present a joint posterior sampling framework that combines two separate diffusion models to model the distribution of both clean ultrasound and haze in an unsupervised manner. Furthermore, we demonstrate techniques for effectively training diffusion models on radio-frequency ultrasound data and highlight the advantages over image data. Experiments on both \emph{in-vitro} and \emph{in-vivo} cardiac datasets show that the proposed dehazing method effectively removes haze while preserving signals from weakly reflected tissue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粒粒发布了新的文献求助10
刚刚
奋斗夏烟完成签到,获得积分10
刚刚
zhanghhsnow发布了新的文献求助20
1秒前
2秒前
2秒前
2秒前
活泼的觅云完成签到,获得积分10
2秒前
Caer发布了新的文献求助10
2秒前
kiki发布了新的文献求助10
4秒前
炙热成危发布了新的文献求助10
4秒前
haixia发布了新的文献求助10
5秒前
5秒前
陈ZQ发布了新的文献求助10
5秒前
90发布了新的文献求助10
5秒前
sunj完成签到,获得积分10
6秒前
7秒前
乐乐应助热泪盈眶采纳,获得10
7秒前
xyy发布了新的文献求助10
7秒前
nhw完成签到,获得积分10
7秒前
小刘发布了新的文献求助10
7秒前
粒粒完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
陈里里发布了新的文献求助20
9秒前
哈哈完成签到,获得积分10
9秒前
10秒前
科研通AI5应助自由山槐采纳,获得30
10秒前
汉堡包应助xcc采纳,获得10
10秒前
11秒前
12秒前
逍遥猪皮发布了新的文献求助10
12秒前
科研通AI5应助zhanyuji采纳,获得10
12秒前
sunj发布了新的文献求助10
12秒前
12秒前
卡卡完成签到,获得积分10
12秒前
丘比特应助元谷雪采纳,获得10
12秒前
SciGPT应助潇洒的白昼采纳,获得10
13秒前
清辉夜凝完成签到 ,获得积分10
13秒前
负责凛完成签到,获得积分10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809784
求助须知:如何正确求助?哪些是违规求助? 3354374
关于积分的说明 10369891
捐赠科研通 3070592
什么是DOI,文献DOI怎么找? 1686492
邀请新用户注册赠送积分活动 810967
科研通“疑难数据库(出版商)”最低求助积分说明 766448