Explainable Multimodal Emotion Reasoning

计算机科学 水准点(测量) 模棱两可 光学(聚焦) 模式 人工智能 过程(计算) 一致性(知识库) 多模态 机器学习 自然语言处理 人机交互 万维网 社会学 地理 程序设计语言 大地测量学 物理 光学 操作系统 社会科学
作者
Zheng Lian,Licai Sun,Mingyu Xu,Haiyang Sun,Ke Xu,Zhuofan Wen,Shun Chen,Bin Liu,Jianhua Tao
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2306.15401
摘要

Multimodal emotion recognition is an active research topic in artificial intelligence. Its primary objective is to integrate multi-modalities (such as acoustic, visual, and lexical clues) to identify human emotional states. Current works generally assume accurate emotion labels for benchmark datasets and focus on developing more effective architectures. But due to the inherent subjectivity of emotions, existing datasets often lack high annotation consistency, resulting in potentially inaccurate labels. Consequently, models built on these datasets may struggle to meet the demands of practical applications. To address this issue, it is crucial to enhance the reliability of emotion annotations. In this paper, we propose a novel task called ``\textbf{Explainable Multimodal Emotion Reasoning (EMER)}''. In contrast to previous works that primarily focus on predicting emotions, EMER takes a step further by providing explanations for these predictions. The prediction is considered correct as long as the reasoning process behind the predicted emotion is plausible. This paper presents our initial efforts on EMER, where we introduce a benchmark dataset, establish baseline models, and define evaluation metrics. Meanwhile, we observe the necessity of integrating multi-faceted capabilities to deal with EMER. Therefore, we propose the first multimodal large language model (LLM) in affective computing, called \textbf{AffectGPT}. We aim to tackle the long-standing challenge of label ambiguity and chart a path toward more reliable techniques. Furthermore, EMER offers an opportunity to evaluate the audio-video-text understanding capabilities of recent multimodal LLM. To facilitate further research, we make the code and data available at: https://github.com/zeroQiaoba/AffectGPT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小M发布了新的文献求助10
1秒前
judy发布了新的文献求助10
2秒前
6秒前
crazyant完成签到,获得积分10
12秒前
dinglingling完成签到 ,获得积分10
12秒前
科研通AI2S应助aganer采纳,获得10
15秒前
16秒前
Tang发布了新的文献求助10
20秒前
crazyant发布了新的文献求助20
21秒前
小M完成签到,获得积分10
22秒前
22秒前
23秒前
aganer完成签到,获得积分10
24秒前
26秒前
27秒前
Akim应助温婉的夏烟采纳,获得10
27秒前
aganer发布了新的文献求助10
28秒前
yun完成签到,获得积分10
32秒前
33秒前
34秒前
35秒前
36秒前
萤火虫完成签到,获得积分0
37秒前
黄芩完成签到 ,获得积分10
38秒前
自然宫苴发布了新的文献求助10
38秒前
笑柳完成签到,获得积分10
39秒前
萤火虫发布了新的文献求助30
40秒前
40秒前
Lucas应助ppppp采纳,获得10
41秒前
41秒前
zhaoty完成签到,获得积分10
41秒前
41秒前
神海发布了新的文献求助10
46秒前
jenningseastera应助wenze采纳,获得10
47秒前
领导范儿应助自然宫苴采纳,获得10
47秒前
48秒前
49秒前
酷波er应助光亮含羞草采纳,获得10
50秒前
老仙翁完成签到,获得积分10
51秒前
神海完成签到,获得积分10
52秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824369
求助须知:如何正确求助?哪些是违规求助? 3366692
关于积分的说明 10442081
捐赠科研通 3085983
什么是DOI,文献DOI怎么找? 1697652
邀请新用户注册赠送积分活动 816450
科研通“疑难数据库(出版商)”最低求助积分说明 769640