Inside- and Outside-Coated PANI and/or PIN-TiO2 Nanotubes for Enhanced Photocatalytic Degradation of 4-Nitrophenol in Wastewater

降级(电信) 光催化 材料科学 废水 化学工程 4-硝基苯酚 硝基苯酚 纳米技术 环境科学 化学 催化作用 环境工程 有机化学 纳米颗粒 工程类 电信
作者
S.N. Moghaddas Tafreshi,Afsanehsadat Larimi,Ali Akbar Asgharinezhad,Farhad Khorasheh,Cyrus Ghotbi
出处
期刊:ACS omega [American Chemical Society]
卷期号:9 (52): 51320-51336 被引量:3
标识
DOI:10.1021/acsomega.4c08137
摘要

We present a novel approach for enhancing photocatalytic efficiency by developing polyaniline (PANI) and polyindole (PIN)-coated TiO2 nanotubes (TNT) through a combination of chemical oxidation and hydrothermal processes. The PANI–PIN coating was systematically applied to both the internal and external surfaces of the nanotubes to enhance the photocatalytic active sites and optimize pollutant adsorption. The dual-coated structure enhances the interaction with pollutants, facilitating a more efficient degradation of 4-nitrophenol (4-NP) when exposed to visible light. Thorough characterization through X-ray diffraction (XRD), Fourier-transform infrared (FTIR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), N2-physisorption, transient photocurrent, diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) validated the exceptional structural and optical properties of the composite. The PANI/PIN polymer coating effectively inhibited electron–hole recombination, leading to a notable enhancement in photocatalytic performance. Among the tested composites, the formulation consisting of 75% PANI and 25% PIN demonstrated remarkable performance, achieving a degradation rate of 99.46% for 4-NP in only 120 min of exposure to visible light. The impressive efficiency stems from its extensive surface area (255.3 m2/g), efficient charge separation, minimized band gap (2.77 eV), and improved light absorption. Moreover, the composite demonstrated remarkable recyclability, preserving its catalytic activity across five cycles without any decline in performance. These results demonstrate the strong potential of 75%PPTN as a promising photocatalyst for environmental remediation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
都是驳回了vlots应助
1秒前
来来来完成签到,获得积分10
1秒前
Shale完成签到,获得积分10
3秒前
4秒前
coccocococo完成签到,获得积分10
5秒前
5秒前
科研通AI5应助Sunbrust采纳,获得10
6秒前
HHH完成签到,获得积分10
6秒前
Alice发布了新的文献求助10
7秒前
7秒前
归海若发布了新的文献求助10
9秒前
小柒发布了新的文献求助10
10秒前
sdl发布了新的文献求助10
11秒前
不知道完成签到 ,获得积分10
11秒前
11秒前
月桂氮卓酮完成签到,获得积分10
11秒前
lily发布了新的文献求助10
12秒前
13秒前
学术狗完成签到,获得积分10
15秒前
甜甜完成签到,获得积分10
16秒前
Larluli发布了新的文献求助10
17秒前
科研通AI5应助谨慎的擎宇采纳,获得10
17秒前
智勇双全蘑菇菌完成签到,获得积分10
17秒前
yiyi发布了新的文献求助10
18秒前
阿梦发布了新的文献求助20
19秒前
于于于完成签到,获得积分20
19秒前
19秒前
潇洒忘幽发布了新的文献求助10
20秒前
斯文刺猬发布了新的文献求助10
21秒前
吴瀚韬发布了新的文献求助30
22秒前
xcfvxz完成签到,获得积分10
24秒前
玉儿完成签到,获得积分20
25秒前
25秒前
27秒前
xcfvxz发布了新的文献求助10
28秒前
29秒前
30秒前
lyx完成签到,获得积分10
30秒前
玉儿发布了新的文献求助10
31秒前
wanci应助renkemaomao采纳,获得10
32秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828256
求助须知:如何正确求助?哪些是违规求助? 3370549
关于积分的说明 10464049
捐赠科研通 3090487
什么是DOI,文献DOI怎么找? 1700455
邀请新用户注册赠送积分活动 817837
科研通“疑难数据库(出版商)”最低求助积分说明 770493