Utilizing Artificial Intelligence for Predicting Postoperative Complications in Breast Reduction Surgery: A Comprehensive Retrospective Analysis of Predictive Features and Outcomes

医学 可解释性 接收机工作特性 回顾性队列研究 乳房缩小术 并发症 外科 机器学习 乳房整形术 内科学 计算机科学
作者
Gon Shoham,Tsila Zuckerman,Ehud Fliss,Orel Govrin-Yehudain,Arik Zaretski,Roei Singolda,Daniel Kedar,David Leshem,Ehab Madah,Ehud Arad,Yoav Barnea
出处
期刊:Aesthetic Surgery Journal [Oxford University Press]
被引量:1
标识
DOI:10.1093/asj/sjaf021
摘要

Breast reduction is a common procedure with growing rates in the USA, aimed at alleviating the physical and psychological burdens of macromastia. Despite high success rates, it carries a risk of complications, with incidence rates ranging from 6.2% to 43%. The authors developed a machine learning model using gradient-boosting decision trees to predict severe breast reduction complications up to 30 days following surgery requiring inpatient care. This retrospective study included 322 cases of breast reduction surgery performed at the Tel Aviv Medical Center from 2017 to 2024. Model performance was evaluated using 5-fold cross-validation, and key metrics such as area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity were reported. An interpretability tool was also created to visualize complication risks based on clinical features. Severe complications occurred in 7.4% of cases. Key predictive factors included specimen weight, SN-N distance, and liposuction volume. The model achieved an AUC-ROC of 0.83, with an accuracy of 0.93, negative predictive value of 0.95. The interpretability tool clearly visualized complication risks, aiding preoperative counseling. This is the first study to use AI to predict severe complications in breast reduction surgery. Our AI model, with an AUC-ROC of 0.83 and NPV of 0.95, offers a reliable tool for surgical planning and patient education. Further validation across diverse populations is recommended to confirm its clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccc发布了新的文献求助10
1秒前
苇一完成签到,获得积分10
2秒前
聂志鹏完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
丘比特应助拼搏宛儿采纳,获得10
3秒前
4秒前
4秒前
CodeCraft应助Dr Niu采纳,获得10
4秒前
7秒前
7秒前
7秒前
田様应助木子采纳,获得10
7秒前
内向的小凡完成签到,获得积分0
7秒前
bkagyin应助六六采纳,获得10
8秒前
9秒前
领导范儿应助Jianfeng采纳,获得10
10秒前
ZZG完成签到,获得积分10
12秒前
兴奋醉香发布了新的文献求助10
12秒前
sje完成签到 ,获得积分10
13秒前
14秒前
tree完成签到 ,获得积分10
14秒前
研友_LXOWx8发布了新的文献求助10
14秒前
15秒前
阔达冰兰完成签到,获得积分20
15秒前
15秒前
时来运转完成签到 ,获得积分10
16秒前
NexusExplorer应助淡淡半莲采纳,获得10
16秒前
小蘑菇应助噼里啪啦采纳,获得10
17秒前
霸气傲蕾发布了新的文献求助10
17秒前
17秒前
xiaoshi完成签到,获得积分10
18秒前
星辰大海应助AS123采纳,获得10
19秒前
YUAN完成签到,获得积分20
19秒前
19秒前
西瓜妹完成签到 ,获得积分10
22秒前
MetaMysteria发布了新的文献求助10
22秒前
兴奋醉香完成签到,获得积分20
22秒前
壮观以松完成签到,获得积分10
24秒前
火星上的羽毛完成签到,获得积分10
25秒前
YUAN发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478202
求助须知:如何正确求助?哪些是违规求助? 4579971
关于积分的说明 14371498
捐赠科研通 4508247
什么是DOI,文献DOI怎么找? 2470548
邀请新用户注册赠送积分活动 1457359
关于科研通互助平台的介绍 1431287