Retrieving Scattering Matrices With Gaussian Regularized Adaptive Statistical Prior

高斯分布 统计物理学 数学 应用数学 统计 计算机科学 物理 量子力学
作者
Zhengyang Wang,Daixuan Wu,Yuecheng Shen,Jiawei Luo,Jiajun Liang,Jiaming Liang,Zhiling Zhang,Dalong Qi,Yunhua Yao,Lianzhong Deng,Zhenrong Sun,Shian Zhang
出处
期刊:Laser & Photonics Reviews [Wiley]
标识
DOI:10.1002/lpor.202500120
摘要

Abstract Wavefront shaping has revolutionized the control of light propagation through scattering media, transforming disordered speckles into highly focused optical spots. This breakthrough depends on the accurate and efficient retrieval of scattering matrices, which promises to unlock new possibilities in optical imaging, communication, and sensing. However, a major challenge persists: retrieving scattering matrices from direct intensity measurements, often hindered by the lack of effective prior knowledge or regularization constraints. In this study, we introduce the Gaussian‐regularized adaptive statistical prior fast iterative shrinkage‐thresholding algorithm (GRASP‐FISTA), a novel method designed to overcome this challenge in phase retrieval for scattering media. By exploiting the statistical properties of scattering matrix elements—specifically their circular Gaussian distribution—we impose a robust statistical prior that enhances retrieval accuracy. Integrated with the Plug‐and‐Play FISTA framework, known for its rapid convergence, GRASP‐FISTA offers an efficient and reliable solution to phase retrieval. Experimental validation on multimode fibers, ground glass, and chicken breast tissue demonstrates that GRASP‐FISTA reduces iteration counts by 2–3 times, increases robustness against Gaussian noise, and improves reconstruction accuracy. By incorporating statistical constraints into gradient‐descent‐based methods, GRASP‐FISTA significantly broadens the scope of phase retrieval, paving the way for new applications across diverse scattering processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wjx发布了新的文献求助10
2秒前
2秒前
科研通AI5应助wuwuhu采纳,获得10
2秒前
2秒前
SYLH应助满林采纳,获得10
4秒前
单纯沛槐应助细腻的念真采纳,获得10
4秒前
5秒前
7秒前
轩辕乌发布了新的文献求助20
8秒前
苏苏发布了新的文献求助10
8秒前
bkagyin应助阿批pa啤啵采纳,获得10
8秒前
土豆泥完成签到,获得积分10
9秒前
SciGPT应助Kahanto采纳,获得10
9秒前
9秒前
稳稳发布了新的文献求助10
10秒前
zzyyzz完成签到,获得积分10
11秒前
11秒前
12秒前
JamesPei应助蘸水采纳,获得10
12秒前
研友_VZG7GZ应助15778881974采纳,获得10
13秒前
13秒前
科目三应助M铃采纳,获得10
13秒前
13秒前
Bigweenine完成签到,获得积分10
14秒前
平常水卉完成签到,获得积分10
14秒前
14秒前
14秒前
丨丨完成签到,获得积分10
15秒前
esbd发布了新的文献求助10
15秒前
世界和平完成签到,获得积分10
16秒前
ll完成签到,获得积分10
16秒前
FashionBoy应助苇一采纳,获得10
16秒前
16秒前
17秒前
kid发布了新的文献求助10
17秒前
cdercder应助葛俊杰采纳,获得10
18秒前
Bigweenine发布了新的文献求助10
18秒前
19秒前
研友_VZG7GZ应助cnyyp采纳,获得10
19秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840180
求助须知:如何正确求助?哪些是违规求助? 3382372
关于积分的说明 10523124
捐赠科研通 3101845
什么是DOI,文献DOI怎么找? 1708440
邀请新用户注册赠送积分活动 822478
科研通“疑难数据库(出版商)”最低求助积分说明 773330