Rethinking BCC diagnosis: Automating concept‐specific detection of BCC in dermatoscopic images

皮肤镜检查 人工智能 计算机科学 计算机视觉 计算机图形学(图像) 医学 黑色素瘤 癌症研究
作者
Zheng Wang,Hui Hu,Zirou Liu,Kaibin Lin,Yang Ying,Chen Liu,Xiao Dong Chen,Jianglin Zhang
出处
期刊:Journal der Deutschen Dermatologischen Gesellschaft [Wiley]
卷期号:23 (2): 184-193
标识
DOI:10.1111/ddg.15608
摘要

Basal cell carcinoma (BCC) is a prevalent type of skin cancer in which the inherent subjectivity of dermoscopy poses diagnostic challenges. Existing AI systems, which provide mainly image-level insights, lack the interpretability that is crucial for effective clinical decisions and patient education. Our study developed a refined BCC dataset from the Human‒Machine Adversarial Model (HAM10000), which was annotated by clinicians to identify key diagnostic features. We integrated the ResNet50 and Mask R-CNN architectures to enhance the model's performance by synthesizing feature-related knowledge. Statistical evaluations, such as grouped bar charts and line graphs, validated the improvement in our clinical diagnosis evaluation scheme. The RFSD-BCC system significantly enhanced the diagnosis of BCC, with higher sensitivity, specificity, and accuracy. The system achieved an area under the precision-recall curve of 0.84, which closely matches physicians' diagnoses with high R2 values and low MAEs. With the RFSD-BCC, the sensitivity increased by 7%, the specificity increased by 11%, the accuracy increased by 10%, and the intraclass correlation coefficient increased by 6%, which demonstrates the system's effectiveness in clinical settings. The RFSD-BCC system improves BCC diagnosis by integrating feature combination models, which enhances both sensitivity and specificity. It offers interpretable diagnoses that bridge AI analysis with clinical practice, significantly improving clinicians' diagnostic accuracy and fostering better patient understanding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助无奈的萍采纳,获得10
1秒前
羊羊完成签到 ,获得积分10
4秒前
伶俐问薇完成签到,获得积分10
7秒前
我是米米完成签到 ,获得积分10
8秒前
感动的仙人掌完成签到,获得积分20
11秒前
HEAUBOOK应助橙子采纳,获得20
16秒前
陌上花开完成签到,获得积分0
16秒前
JJ完成签到,获得积分10
17秒前
17秒前
18秒前
唐画完成签到,获得积分10
19秒前
花花猪1989完成签到,获得积分10
19秒前
19秒前
采桑子完成签到,获得积分10
21秒前
22秒前
qiao应助地啦啦啦采纳,获得10
22秒前
无奈的萍发布了新的文献求助10
22秒前
24秒前
ocean完成签到,获得积分10
24秒前
小迪迦奥特曼完成签到,获得积分10
25秒前
26秒前
阳光发布了新的文献求助10
27秒前
顺利萃发布了新的文献求助10
27秒前
开心妙之完成签到,获得积分10
29秒前
guorui发布了新的文献求助10
30秒前
31秒前
科研通AI5应助Guo采纳,获得10
32秒前
开心妙之发布了新的文献求助10
32秒前
甜美半山完成签到,获得积分10
33秒前
中陆完成签到,获得积分10
35秒前
顺利萃完成签到,获得积分10
36秒前
慕青应助皮皮狗采纳,获得10
36秒前
石宇哲发布了新的文献求助10
36秒前
共享精神应助123采纳,获得10
37秒前
爆米花应助mr采纳,获得10
38秒前
李健应助云宝采纳,获得10
38秒前
Akim应助机灵橘子采纳,获得10
39秒前
大个应助11采纳,获得10
40秒前
bkagyin应助邱小姐采纳,获得10
41秒前
我是老大应助无奈的萍采纳,获得10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781499
求助须知:如何正确求助?哪些是违规求助? 3327165
关于积分的说明 10229864
捐赠科研通 3042037
什么是DOI,文献DOI怎么找? 1669761
邀请新用户注册赠送积分活动 799278
科研通“疑难数据库(出版商)”最低求助积分说明 758757