DUCTNet: An Effective Road Crack Segmentation Method in UAV Remote Sensing Images Under Complex Scenes

计算机视觉 人工智能 分割 计算机科学 遥感 图像分割 地质学
作者
Lixiang Sun,Yixin Yang,Zaichun Yang,Guoxiong Zhou,Liujun Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 12682-12695 被引量:4
标识
DOI:10.1109/tits.2024.3384018
摘要

Road crack detection in complex scenarios is challenged by vehicles, traffic facilities, road printed signs and fine cracks. In order to better solve these problems, a novel dense nested depth U-shaped structure for crack image segmentation network named DUCTNet is proposed. Firstly, a depth dense nested structure is designed by combining the superior performance of the Unet $++$ dense nested structure and the deep nested structure of U2Net. This structure improves the ability of the model to extract crack features in depth. Second, a novel deep competitive fusion feature extraction block is proposed. It improves the feature dissimilarity between the cracks and the background by competitive fusion. Then, a novel high-density feature fusion attention mechanism is proposed. This method enhances the contextual and sensitive information of cracks both horizontally and vertically by increasing the feature density. Finally, DUCTNet achieves the best results in comparison tests with eight state-of-the-art specialized crack segmentation networks in both self-built datasets and four public datasets. In addition, DUCTNet achieves excellent results in real road tests, which proves that DUCTNet can provide engineers and technicians with a better means of detecting road cracks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妩媚的强炫完成签到,获得积分10
刚刚
blue完成签到,获得积分10
刚刚
theozhang完成签到,获得积分10
刚刚
chglj427完成签到,获得积分0
1秒前
1秒前
Kai完成签到,获得积分10
1秒前
释棱完成签到 ,获得积分10
1秒前
番茄黄瓜芝士片完成签到 ,获得积分10
1秒前
汉堡包应助yk采纳,获得10
1秒前
Jasper应助感谢你的帮助采纳,获得10
1秒前
沉静的龙猫完成签到,获得积分10
1秒前
多吃青菜完成签到,获得积分10
2秒前
kewell完成签到,获得积分10
2秒前
科研完成签到,获得积分10
2秒前
PhishCellar完成签到 ,获得积分10
2秒前
dddd完成签到,获得积分10
2秒前
jeeya完成签到,获得积分10
3秒前
Gurlstrian完成签到,获得积分10
3秒前
心灵美凝竹完成签到 ,获得积分10
3秒前
rrrick完成签到,获得积分10
3秒前
JHL发布了新的文献求助10
4秒前
CiCi完成签到 ,获得积分10
4秒前
科幻画完成签到,获得积分10
4秒前
黑暗里看世界完成签到,获得积分10
4秒前
小陈完成签到,获得积分10
4秒前
Lucy1069089289完成签到,获得积分10
5秒前
zhiqing完成签到 ,获得积分10
5秒前
5秒前
搜集达人应助liqing采纳,获得30
6秒前
6秒前
天地一沙鸥完成签到 ,获得积分10
6秒前
忧郁的书易完成签到,获得积分10
7秒前
7秒前
7秒前
byron完成签到,获得积分10
8秒前
浪仔完成签到,获得积分10
8秒前
随性完成签到,获得积分10
8秒前
9秒前
9秒前
笨笨芯应助yukito采纳,获得10
9秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784938
求助须知:如何正确求助?哪些是违规求助? 3330274
关于积分的说明 10245276
捐赠科研通 3045590
什么是DOI,文献DOI怎么找? 1671719
邀请新用户注册赠送积分活动 800686
科研通“疑难数据库(出版商)”最低求助积分说明 759609