Integrating Multi‐Omics Data to Uncover Prostate Tissue DNA Methylation Biomarkers and Target Genes for Prostate Cancer Risk

前列腺癌 德纳姆 生物 CpG站点 DNA甲基化 前列腺 基因 甲基化 计算生物学 遗传学 基因表达 癌症
作者
Shuai Liu,Jingjing Zhu,D.P.L. Green,Hua Zhong,Quan Long,Chong Wu,Liang Wang,Youping Deng,Lang Wu
出处
期刊:Molecular Carcinogenesis [Wiley]
标识
DOI:10.1002/mc.23828
摘要

ABSTRACT Previous studies have indicated that specific CpG sites may be linked to the risk of prostate cancer (PCa) by regulating the expression of PCa target genes. However, most existing studies aim to identify DNA methylation (DNAm) biomarkers through blood tissue genetic instruments, which impedes the identification of relevant biomarkers in prostate tissue. To identify PCa risk‐associated CpG sites in prostate tissue, we established genetic prediction models of DNAm levels using data from normal prostate samples in the GTEx ( N = 108) and assessed associations between genetically predicted DNAm in prostate and PCa risk by studying 122,188 cases and 604,640 controls. We observed significant associations for 3879 CpG sites, including 926 at novel genomic loci. Among them, DNAm levels of 80 CpG sites located at novel loci are significantly associated with expression levels of 45 neighboring genes in normal prostate tissue. Of these genes, 11 further exhibit significant associations with PCa risk for their predicted expression levels in prostate tissue. Intriguingly, a total of 31 CpG sites demonstrate consistent association patterns across the methylation–gene expression–PCa risk pathway. Our findings suggest that specific CpG sites may be related to PCa risk by modulating the expression of nearby target genes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陈炳蓉完成签到,获得积分10
1秒前
星辰大海应助笨笨芯采纳,获得10
2秒前
judy完成签到,获得积分10
3秒前
3秒前
包笑白完成签到,获得积分10
3秒前
3秒前
4秒前
xiaoni发布了新的文献求助10
4秒前
科研通AI5应助pfshan采纳,获得10
4秒前
Cathay完成签到,获得积分10
5秒前
丸子发布了新的文献求助10
5秒前
5秒前
小金完成签到,获得积分20
6秒前
忠玉发布了新的文献求助10
6秒前
6秒前
XXXXX-11发布了新的文献求助10
6秒前
wangxiaopang完成签到,获得积分10
6秒前
7秒前
小马甲应助梦想采纳,获得10
8秒前
8秒前
wangxiaopang发布了新的文献求助10
9秒前
9秒前
高贵安青完成签到 ,获得积分10
10秒前
11秒前
珍珠奶茶发布了新的文献求助10
11秒前
OK完成签到,获得积分10
11秒前
12秒前
迅速谷槐发布了新的文献求助10
12秒前
夏日发布了新的文献求助10
12秒前
13秒前
13秒前
haix应助猪美丽采纳,获得10
13秒前
13秒前
13秒前
忠玉完成签到,获得积分10
14秒前
复杂的不弱完成签到,获得积分10
15秒前
DI发布了新的文献求助10
15秒前
yitata完成签到,获得积分10
15秒前
丸子完成签到,获得积分10
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835451
求助须知:如何正确求助?哪些是违规求助? 3377792
关于积分的说明 10500526
捐赠科研通 3097382
什么是DOI,文献DOI怎么找? 1705711
邀请新用户注册赠送积分活动 820691
科研通“疑难数据库(出版商)”最低求助积分说明 772219