Optimizing Slender Target Detection in Remote Sensing with Adaptive Boundary Perception

计算机科学 初始化 边界(拓扑) 跳跃式监视 探测器 最小边界框 卷积神经网络 干扰(通信) 人工智能 感知 计算机视觉 图像(数学) 数学 频道(广播) 电信 神经科学 生物 程序设计语言 数学分析
作者
Zhu Han,Donglin Jing
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (14): 2643-2643 被引量:2
标识
DOI:10.3390/rs16142643
摘要

Over the past few years, target detectors that utilize Convolutional Neural Networks have gained extensive application in the domain of remote sensing (RS) imagery. Recently, optimizing bounding boxes has consistently been a hot topic in the research field. However, existing methods often fail to take into account the interference caused by the shape and orientation changes of RS targets with high aspect ratios during training, leading to challenges in boundary perception when dealing with RS targets that have large aspect ratios. To deal with this challenge, our study introduces the Adaptive Boundary Perception Network (ABP-Net), a novel two-stage approach consisting of pre-training and training phases, which enhances the boundary perception of CNN-based detectors. In the pre-training phase, involving the initialization of our model’s backbone network and the label assignment, the traditional label assignment with a fixed IoU threshold fails to fully cover the critical information of slender targets, resulting in the detector missing lots of high-quality positive samples. To overcome this drawback, we design a Shape-Sensitive (S-S) label assignment strategy that can improve the boundary shape perception by dynamically adjusting the IoU threshold according to the aspect ratios of the targets so that the high-quality samples with critical features can be divided into positive samples. Moreover, during the training phase, minor angle differences of the slender bounding box may cause a significant change in the value of the loss function, producing unstable gradients. Such drastic gradient changes make it difficult for the model to find a stable update direction when optimizing the bounding box parameters, resulting in difficulty with the model convergence. To this end, we propose the Robust–Refined loss function (R-R), which can enhance the boundary localization perception by focusing on low-error samples and suppressing the gradient amplification of difficult samples, thereby improving the model stability and convergence. Experiments on UCAS-AOD and HRSC2016 datasets validate our specialized detector for high-aspect-ratio targets, improving performance, efficiency, and accuracy with straightforward operation and quick deployment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lucas应助我不看月亮采纳,获得10
6秒前
流川枫完成签到,获得积分20
7秒前
8秒前
DXM完成签到 ,获得积分10
10秒前
10秒前
流川枫发布了新的文献求助10
11秒前
13秒前
共享精神应助坦率的寻双采纳,获得10
13秒前
赵晶晶完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
16秒前
冷静机器猫完成签到,获得积分10
18秒前
追寻紫安发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
薛雨佳发布了新的文献求助30
21秒前
天天开心完成签到 ,获得积分10
22秒前
SS小天使完成签到 ,获得积分10
23秒前
23秒前
24秒前
杜嘟嘟完成签到,获得积分10
24秒前
小马甲应助Xiaoguo采纳,获得10
24秒前
25秒前
阔达碧空发布了新的文献求助10
25秒前
zuducyow发布了新的文献求助10
25秒前
星星发布了新的文献求助10
28秒前
28秒前
小马甲应助风趣的芙蓉采纳,获得30
34秒前
大个应助赵雷采纳,获得10
36秒前
完美世界应助zuducyow采纳,获得10
39秒前
39秒前
无名完成签到,获得积分10
41秒前
42秒前
44秒前
香蕉书竹发布了新的文献求助10
44秒前
44秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784073
求助须知:如何正确求助?哪些是违规求助? 3329170
关于积分的说明 10240562
捐赠科研通 3044703
什么是DOI,文献DOI怎么找? 1671219
邀请新用户注册赠送积分活动 800191
科研通“疑难数据库(出版商)”最低求助积分说明 759222