已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhanced Long-Tailed Recognition with Contrastive CutMix Augmentation

计算机科学 人工智能 模式识别(心理学) 语音识别
作者
Haolin Pan,Yong Guo,Mianjie Yu,Jian Chen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2024.3425148
摘要

Real-world data often follows a long-tailed distribution, where a few head classes occupy most of the data and a large number of tail classes only contain very limited samples. In practice, deep models often show poor generalization performance on tail classes due to the imbalanced distribution. To tackle this, data augmentation has become an effective way by synthesizing new samples for tail classes. Among them, one popular way is to use CutMix that explicitly mixups the images of tail classes and the others, while constructing the labels according to the ratio of areas cropped from two images. However, the area-based labels entirely ignore the inherent semantic information of the augmented samples, often leading to misleading training signals. To address this issue, we propose a Contrastive CutMix (ConCutMix) that constructs augmented samples with semantically consistent labels to boost the performance of long-tailed recognition. Specifically, we compute the similarities between samples in the semantic space learned by contrastive learning, and use them to rectify the area-based labels. Experiments show that our ConCutMix significantly improves the accuracy on tail classes as well as the overall performance. For example, based on ResNeXt-50, we improve the overall accuracy on ImageNet-LT by 3.0% thanks to the significant improvement of 3.3% on tail classes. We highlight that the improvement also generalizes well to other benchmarks and models. Our code and pretrained models are available at https://github.com/PanHaulin/ConCutMix.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yacon发布了新的文献求助10
1秒前
123发布了新的文献求助10
1秒前
张教授完成签到 ,获得积分10
1秒前
fatali完成签到,获得积分10
3秒前
成就莞发布了新的文献求助10
4秒前
无花果应助Yacon采纳,获得10
4秒前
suga'完成签到 ,获得积分10
6秒前
su完成签到 ,获得积分10
7秒前
8秒前
Wzh完成签到,获得积分20
10秒前
wao完成签到 ,获得积分10
10秒前
13秒前
13秒前
嗯嗯发布了新的文献求助10
13秒前
犹豫的铅笔完成签到,获得积分10
14秒前
14秒前
jimmy完成签到,获得积分10
16秒前
英姑应助Bobo采纳,获得10
16秒前
16秒前
16秒前
16秒前
科研通AI5应助DLDL采纳,获得10
18秒前
uuuu发布了新的文献求助10
18秒前
搜集达人应助123采纳,获得10
19秒前
19秒前
知了发布了新的文献求助10
19秒前
20秒前
puhong zhang发布了新的文献求助10
20秒前
陆陶缘完成签到 ,获得积分10
21秒前
安安完成签到 ,获得积分10
22秒前
哈哈哈哈完成签到,获得积分10
24秒前
杨__完成签到,获得积分10
24秒前
Ben发布了新的文献求助10
25秒前
25秒前
CC发布了新的文献求助10
25秒前
25秒前
你想读博吗完成签到,获得积分10
26秒前
CodeCraft应助3s采纳,获得10
27秒前
cyz应助dada采纳,获得10
28秒前
懵懂的翼完成签到 ,获得积分10
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803841
求助须知:如何正确求助?哪些是违规求助? 3348654
关于积分的说明 10339744
捐赠科研通 3064811
什么是DOI,文献DOI怎么找? 1682782
邀请新用户注册赠送积分活动 808429
科研通“疑难数据库(出版商)”最低求助积分说明 764096