莫里斯水上航行任务
氧化应激
超氧化物歧化酶
厚壁菌
丙二醛
肠道菌群
生物
海马体
病理
内分泌学
医学
生物化学
16S核糖体RNA
基因
作者
Mingyue Yin,Jiangjiang Peng,Ming Chen,Qingqing Zhan,Hui Zhong
标识
DOI:10.1089/jmf.2024.k.0160
摘要
The microbial-gut-brain axis and oxidative stress may be important to the pathogenesis of Alzheimer's disease (AD). Rosa roxburghii Tratt polysaccharides (RRTP) have a strong antioxidant effect and can affect the gut microbiota, and whether it can affect AD is unknown. So, AlCl3 and d-galactose were used to establish AD model rats, and RRTP was used as an intervention treatment. Morris water maze test was used to detect cognitive functions. The hippocampus was used to observe the pathological changes, and the cortex was used to measure antioxidant markers. The stool was collected for 16S rDNA sequencing. Morris water maze test showed that the learning ability and memory level of AD group rats were decreased, and RRTP intervention could mitigate the injury to a certain extent. In the AD group, hematoxylin-eosin staining revealed changes in the morphology of neurons, silver glycine staining revealed neurofibrillary tangles and Congo red staining revealed β-amyloid. RRTP could ameliorate the above changes to some extent. The results of superoxide dismutase, malondialdehyde, and glutathione peroxidase showed that the antioxidant capacity in the RRTP intervention group was significantly higher than that in the AD group. 16S rDNA sequencing results showed that there were differences in the species composition of gut microbiota, and the ratio of Firmicutes to Bacteroidetes in the AD group was decreased. After RRTP intervention, the proportion of Lactobacillus increased. In conclusion, RRTP may prevent AD pathology and cognitive functions in rats to a certain extent through the microbiota-gut-brain axis and oxidative stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI