Pan-Cancer Spatial Profiling Reveals Conserved Subtypes and Niches of Cancer-Associated Fibroblasts

计算生物学 生物 仿形(计算机编程) 癌症 生态位 遗传学 癌症研究 生态学 计算机科学 操作系统 栖息地
作者
Hani Jieun Kim,Travis Ruan,Alexander Swarbrick
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:85 (14): 2555-2557
标识
DOI:10.1158/0008-5472.can-25-2181
摘要

Solid cancers are complex "ecosystems" comprised of diverse cell types and extracellular molecules, in which heterotypic interactions significantly influence disease etiology and therapeutic response. However, our current understanding of tumor microenvironments remains incomplete, hindering the development and implementation of novel tumor microenvironment-targeted drugs. To maximize cancer therapeutic development, we require a system-level understanding of the malignant, stromal, and immune states that define the tumor and determine treatment response. In their recent study, Liu and colleagues took a new approach to resolving the complexity of stromal heterogeneity. They leveraged extensive single-cell spatial multiomic datasets across various cancer types and platforms to identify four conserved spatial cancer-associated fibroblast (CAF) subtypes, classified by their spatial organization and cellular neighborhoods. Their work expands upon prior efforts to develop a CAF taxonomy, which primarily relied on single-cell RNA sequencing and yielded a multitude of classification systems. This study advances our understanding of CAF biology by establishing a link between spatial context and CAF identity across diverse tumor types. Departing from recent single-cell transcriptomic studies that employed a marker-based approach for substate identification, Liu and colleagues conducted de novo discovery of CAF subtypes using spatial neighborhood information alone. By positioning spatial organization as the defining axis of CAF heterogeneity, this research redefines CAF classification and provides a new framework for exploring the rules governing tumor ecosystems and developing novel ecosystem-based therapeutic strategies. This article is part of a special series: Driving Cancer Discoveries with Computational Research, Data Science, and Machine Learning/AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
萊以托尔福完成签到,获得积分10
刚刚
XXXTTT发布了新的文献求助10
1秒前
2秒前
丘比特应助安平采纳,获得10
2秒前
4秒前
苹果谷蕊发布了新的文献求助10
5秒前
sss发布了新的文献求助10
5秒前
6秒前
6秒前
背后的大侠完成签到,获得积分10
7秒前
竹寺发布了新的文献求助10
7秒前
Sandwich发布了新的文献求助10
8秒前
9秒前
HAHA完成签到,获得积分10
9秒前
9秒前
9秒前
sss完成签到,获得积分10
11秒前
nenoaowu发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
husky完成签到,获得积分20
11秒前
前进的光发布了新的文献求助30
12秒前
mm完成签到,获得积分10
12秒前
尊敬寒松完成签到 ,获得积分10
12秒前
Akim应助坦率的摩托采纳,获得10
13秒前
13秒前
ty完成签到,获得积分10
14秒前
14秒前
英俊的铭应助Rick采纳,获得10
14秒前
赘婿应助nenoaowu采纳,获得10
14秒前
Sandwich完成签到,获得积分20
14秒前
15秒前
晚风发布了新的文献求助10
15秒前
jiangchang完成签到,获得积分10
15秒前
15秒前
mm发布了新的文献求助10
16秒前
xiaozheng发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968781
求助须知:如何正确求助?哪些是违规求助? 4225990
关于积分的说明 13161443
捐赠科研通 4013136
什么是DOI,文献DOI怎么找? 2195894
邀请新用户注册赠送积分活动 1209316
关于科研通互助平台的介绍 1123362