SCL-YOLOv8n based rice disease lightweight detection method

计算机科学
作者
Xinyu Jin,F. Richard Yu,Yina Suo,Xiaoming Song,Ran Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (5): 056006-056006
标识
DOI:10.1088/1361-6501/add1fe
摘要

Abstract To address the challenges posed by complex rice disease features, low detection accuracy, and large model size, this paper, we propose slim cross-level lightweight YOLOv8n (SCL-YOLOv8n), an enhanced lightweight target detection framework based on YOLOv8n. Firstly, a novel slim-neck network architecture was designed to optimize concatenation of feature representations, thereby reducing computational cost and the number of parameters. Secondly, the receptive-field collaborative attention cross-stage partial network (RFCA-CSP) was proposed, integrating convolutional neural networks with the transformer architecture to enhance feature extraction capabilities while minimizing computational overhead. Finally, the lightweight shared-convolution with separated batch normalization and dynamic anchors (LSCSBD) detection head was incorporated to enhance the model’s computational efficiency through the implementation of techniques including shared convolution, separated batch normalization, and dynamic anchor generation. Experimental results demonstrate that the improved SCL-YOLOv8n increased the mAP50 by 5.0%. points compared with the traditional YOLOv8n. Concurrently, it decreased the parameter count to 1.93 M and the computational volume to 5.5 GFLOPs. These represent reductions of 35.7% and 31.3% respectively when compared with the original model. The SCL-YOLOv8n architecture exhibits dual advantages, it not only enhances the accuracy of object detection but also achieves substantial reductions in both the number of parameters and computational complexity. This advancement offers an effective approach for detecting rice diseases in complex backgrounds, thereby demonstrating significant potential for application in agricultural disease monitoring scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LL发布了新的文献求助10
1秒前
SciGPT应助饼干肥熊采纳,获得10
2秒前
3秒前
今后应助聪明亦玉采纳,获得10
3秒前
3秒前
许家星发布了新的文献求助10
3秒前
6秒前
Tracyyu发布了新的文献求助10
7秒前
思源应助LL采纳,获得10
7秒前
8秒前
9秒前
小蘑菇应助lisa采纳,获得10
9秒前
lihua完成签到,获得积分10
9秒前
10秒前
科研通AI5应助jibo采纳,获得10
11秒前
嘀嘀哒哒发布了新的文献求助10
11秒前
高高的哈密瓜完成签到 ,获得积分10
12秒前
12秒前
Zoe完成签到,获得积分10
13秒前
13秒前
13秒前
duduguai完成签到 ,获得积分10
14秒前
小桥人独立完成签到,获得积分10
14秒前
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
Raymond应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
大模型应助科研通管家采纳,获得10
15秒前
15秒前
Akim应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4766468
求助须知:如何正确求助?哪些是违规求助? 4104047
关于积分的说明 12696094
捐赠科研通 3821706
什么是DOI,文献DOI怎么找? 2109296
邀请新用户注册赠送积分活动 1133789
关于科研通互助平台的介绍 1014487