SCL-YOLOv8n based rice disease lightweight detection method

计算机科学
作者
Xinyu Jin,F. Richard Yu,Yina Suo,Xiaoming Song,Ran Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (5): 056006-056006
标识
DOI:10.1088/1361-6501/add1fe
摘要

Abstract To address the challenges posed by complex rice disease features, low detection accuracy, and large model size, this paper, we propose slim cross-level lightweight YOLOv8n (SCL-YOLOv8n), an enhanced lightweight target detection framework based on YOLOv8n. Firstly, a novel slim-neck network architecture was designed to optimize concatenation of feature representations, thereby reducing computational cost and the number of parameters. Secondly, the receptive-field collaborative attention cross-stage partial network (RFCA-CSP) was proposed, integrating convolutional neural networks with the transformer architecture to enhance feature extraction capabilities while minimizing computational overhead. Finally, the lightweight shared-convolution with separated batch normalization and dynamic anchors (LSCSBD) detection head was incorporated to enhance the model’s computational efficiency through the implementation of techniques including shared convolution, separated batch normalization, and dynamic anchor generation. Experimental results demonstrate that the improved SCL-YOLOv8n increased the mAP50 by 5.0%. points compared with the traditional YOLOv8n. Concurrently, it decreased the parameter count to 1.93 M and the computational volume to 5.5 GFLOPs. These represent reductions of 35.7% and 31.3% respectively when compared with the original model. The SCL-YOLOv8n architecture exhibits dual advantages, it not only enhances the accuracy of object detection but also achieves substantial reductions in both the number of parameters and computational complexity. This advancement offers an effective approach for detecting rice diseases in complex backgrounds, thereby demonstrating significant potential for application in agricultural disease monitoring scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钮卿完成签到,获得积分10
2秒前
科研通AI2S应助云湮采纳,获得10
2秒前
和颂发布了新的文献求助10
3秒前
皮皮发布了新的文献求助30
4秒前
研友_nqv5WZ完成签到 ,获得积分10
5秒前
小二郎应助drwang采纳,获得10
5秒前
乐乐应助drwang采纳,获得30
5秒前
6秒前
zwy109完成签到 ,获得积分10
6秒前
yu完成签到 ,获得积分10
7秒前
慕青应助郭海涛采纳,获得10
9秒前
炙热若云完成签到,获得积分10
9秒前
周芷卉完成签到 ,获得积分10
10秒前
blance发布了新的文献求助30
11秒前
橘子完成签到,获得积分10
12秒前
Desole完成签到,获得积分10
12秒前
13秒前
自由的风完成签到,获得积分10
14秒前
14秒前
科研通AI5应助央央采纳,获得10
14秒前
明明发布了新的文献求助10
14秒前
科yt完成签到,获得积分10
15秒前
双人鱼life完成签到 ,获得积分10
15秒前
11111发布了新的文献求助10
17秒前
静静完成签到,获得积分10
18秒前
大模型应助发嗲的高跟鞋采纳,获得10
20秒前
23秒前
米朵发布了新的文献求助10
23秒前
药小隐完成签到 ,获得积分10
23秒前
lanzinuo完成签到 ,获得积分10
24秒前
25秒前
彭于晏应助曦曦采纳,获得10
29秒前
央央发布了新的文献求助10
29秒前
30秒前
ccx完成签到,获得积分10
30秒前
30秒前
30秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
orixero应助科研通管家采纳,获得10
31秒前
英俊的铭应助科研通管家采纳,获得10
31秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Routledge Handbook of Language and Intercultural Communication 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826701
求助须知:如何正确求助?哪些是违规求助? 3369009
关于积分的说明 10453658
捐赠科研通 3088582
什么是DOI,文献DOI怎么找? 1699218
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770148