A 1D-CNN prediction model for stroke classification based on EEG signal

脑电图 计算机科学 人工智能 冲程(发动机) 特征提取 特征(语言学) 深度学习 机器学习 人工神经网络 模式识别(心理学) 医学 工程类 语言学 机械工程 精神科 哲学
作者
Teng Wang,Fenglian Li,Xueying Zhang,Lixia Huang,Wenhui Jia
标识
DOI:10.1145/3571662.3571695
摘要

Stroke is an acute cerebrovascular disease with high mortality and disability. Computer-aided interventional diagnosis is a necessary measure to improve the efficiency of stroke diagnosis by using modern advanced medical instruments and machine learning methods. Electroencephalogram (EEG) as a diagnostic means, is a test that measures the electrical activity of the brain through electrodes attached to the scalp to find changes in brain activity. EEG detection has the advantages of low cost, simple and easy to implement, and no physical harm and psychological stress to patients. Studies have shown that EEG signal might be useful in diagnosing stroke. By using machine learning methods, EEG signals can be used to classify stroke patients and normal subjects, or subtypes. Stroke is generally divided into two types: ischemic stroke and hemorrhagic stroke. How to classify ischemic and hemorrhagic strokes based on stroke patients' EEG data by constructing prediction model is the main purpose on this paper. In recent years, researchers have developed many technologies in the field of stroke classification prediction based on EEG signals, using a variety of machine learning methods to ensure the improvement of prediction accuracy. The typical methods usually extract the time domain, frequency domain or spatial domain features of EEG signals before establishing a stroke classification model. However, the quality of the extracted features cannot be guaranteed in stroke patient or subtype classification. In addition, EEG feature extraction is usually computationally expensive. The main goal of this paper is to propose a novel classification prediction model using an end-to-end deep neural network that avoids the process of manual feature extraction. This paper proposes a one-dimensional convolutional neural network (1D-CNN) classification model based on stroke EEG signal. The model includes four convolutional blocks, a global average pooling layer, a dropout layer, and a SoftMax layer. Each convolution block consists of two convolution layers and a pool layer for extracting features and reducing the number of parameters. A one-dimensional convolution kernel is used in order to match the characteristics of EEG one-dimensional time domain signal. The model can automatically extract the features of stroke EEG signal for classifying stroke by using convolutional layers. The EEG data of clinical stroke patients collected from the neurology department of a hospital are used in the experiments. Long Short-Term Memory (LSTM) model is also used as a benchmark to achieve end-to-end prediction for verifying the proposed model performance. The experimental results show that the proposed 1D-CNN prediction model has good prediction performance, with an accuracy of 90.53%, a precision of 87.90%, a sensitivity of 91.60%, and a specificity of 89.65%. It is much higher than the prediction result of LSTM model.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
eric888应助科研通管家采纳,获得50
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
呀呼发布了新的文献求助10
3秒前
haoqingyun完成签到,获得积分20
4秒前
4秒前
悲伤的小卷毛完成签到,获得积分10
7秒前
10秒前
11秒前
14秒前
15秒前
18秒前
年轻傲松完成签到,获得积分20
20秒前
22秒前
乐乐应助燕尔蓝采纳,获得10
24秒前
an发布了新的文献求助10
24秒前
25秒前
林非鹿发布了新的文献求助10
28秒前
28秒前
29秒前
打打应助mmm采纳,获得10
31秒前
呀呼发布了新的文献求助10
33秒前
哈哈哈哈发布了新的文献求助10
34秒前
小橘子发布了新的文献求助10
34秒前
35秒前
科研通AI6.1应助an采纳,获得10
37秒前
刘大河完成签到,获得积分10
37秒前
39秒前
zcf发布了新的文献求助10
43秒前
情怀应助一一采纳,获得10
45秒前
Hello应助小橘子采纳,获得10
46秒前
48秒前
wanci应助zcf采纳,获得10
49秒前
53秒前
53秒前
cccyyy发布了新的文献求助10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5837963
求助须知:如何正确求助?哪些是违规求助? 6128085
关于积分的说明 15600075
捐赠科研通 4956196
什么是DOI,文献DOI怎么找? 2671456
邀请新用户注册赠送积分活动 1616661
关于科研通互助平台的介绍 1571733