亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A 1D-CNN prediction model for stroke classification based on EEG signal

脑电图 计算机科学 人工智能 冲程(发动机) 特征提取 特征(语言学) 深度学习 机器学习 人工神经网络 模式识别(心理学) 医学 工程类 语言学 机械工程 精神科 哲学
作者
Teng Wang,Fenglian Li,Xueying Zhang,Lixia Huang,Wenhui Jia
标识
DOI:10.1145/3571662.3571695
摘要

Stroke is an acute cerebrovascular disease with high mortality and disability. Computer-aided interventional diagnosis is a necessary measure to improve the efficiency of stroke diagnosis by using modern advanced medical instruments and machine learning methods. Electroencephalogram (EEG) as a diagnostic means, is a test that measures the electrical activity of the brain through electrodes attached to the scalp to find changes in brain activity. EEG detection has the advantages of low cost, simple and easy to implement, and no physical harm and psychological stress to patients. Studies have shown that EEG signal might be useful in diagnosing stroke. By using machine learning methods, EEG signals can be used to classify stroke patients and normal subjects, or subtypes. Stroke is generally divided into two types: ischemic stroke and hemorrhagic stroke. How to classify ischemic and hemorrhagic strokes based on stroke patients' EEG data by constructing prediction model is the main purpose on this paper. In recent years, researchers have developed many technologies in the field of stroke classification prediction based on EEG signals, using a variety of machine learning methods to ensure the improvement of prediction accuracy. The typical methods usually extract the time domain, frequency domain or spatial domain features of EEG signals before establishing a stroke classification model. However, the quality of the extracted features cannot be guaranteed in stroke patient or subtype classification. In addition, EEG feature extraction is usually computationally expensive. The main goal of this paper is to propose a novel classification prediction model using an end-to-end deep neural network that avoids the process of manual feature extraction. This paper proposes a one-dimensional convolutional neural network (1D-CNN) classification model based on stroke EEG signal. The model includes four convolutional blocks, a global average pooling layer, a dropout layer, and a SoftMax layer. Each convolution block consists of two convolution layers and a pool layer for extracting features and reducing the number of parameters. A one-dimensional convolution kernel is used in order to match the characteristics of EEG one-dimensional time domain signal. The model can automatically extract the features of stroke EEG signal for classifying stroke by using convolutional layers. The EEG data of clinical stroke patients collected from the neurology department of a hospital are used in the experiments. Long Short-Term Memory (LSTM) model is also used as a benchmark to achieve end-to-end prediction for verifying the proposed model performance. The experimental results show that the proposed 1D-CNN prediction model has good prediction performance, with an accuracy of 90.53%, a precision of 87.90%, a sensitivity of 91.60%, and a specificity of 89.65%. It is much higher than the prediction result of LSTM model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘应助yuanyuan采纳,获得10
刚刚
花生完成签到,获得积分10
7秒前
zzjzz发布了新的文献求助10
7秒前
8秒前
11秒前
漫漫发布了新的文献求助10
12秒前
科研通AI5应助小时了了采纳,获得10
15秒前
丘比特应助刘凯采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
迅速怜寒发布了新的文献求助10
19秒前
21秒前
祥瑞发布了新的文献求助10
28秒前
yuanyuan完成签到,获得积分10
29秒前
Ember完成签到 ,获得积分10
38秒前
李爱国应助自由意志采纳,获得10
41秒前
44秒前
沉静丹寒发布了新的文献求助20
45秒前
刘凯发布了新的文献求助10
49秒前
东郭凝蝶发布了新的文献求助10
50秒前
55秒前
沉静丹寒完成签到,获得积分10
57秒前
刘凯完成签到,获得积分10
57秒前
田様应助花卷采纳,获得10
1分钟前
王木木完成签到 ,获得积分10
1分钟前
Ye完成签到,获得积分10
1分钟前
李健的小迷弟应助祥瑞采纳,获得10
1分钟前
小小康康完成签到,获得积分10
1分钟前
淡漠完成签到 ,获得积分10
1分钟前
1分钟前
周浩宇完成签到,获得积分10
1分钟前
SCI的李完成签到 ,获得积分10
1分钟前
共享精神应助周浩宇采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI5应助漫漫采纳,获得10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220616
求助须知:如何正确求助?哪些是违规求助? 4393937
关于积分的说明 13679994
捐赠科研通 4256902
什么是DOI,文献DOI怎么找? 2335835
邀请新用户注册赠送积分活动 1333445
关于科研通互助平台的介绍 1287819