A 1D-CNN prediction model for stroke classification based on EEG signal

脑电图 计算机科学 人工智能 冲程(发动机) 特征提取 特征(语言学) 深度学习 机器学习 人工神经网络 模式识别(心理学) 医学 工程类 机械工程 语言学 哲学 精神科
作者
Teng Wang,Fenglian Li,Xueying Zhang,Lixia Huang,Wenhui Jia
标识
DOI:10.1145/3571662.3571695
摘要

Stroke is an acute cerebrovascular disease with high mortality and disability. Computer-aided interventional diagnosis is a necessary measure to improve the efficiency of stroke diagnosis by using modern advanced medical instruments and machine learning methods. Electroencephalogram (EEG) as a diagnostic means, is a test that measures the electrical activity of the brain through electrodes attached to the scalp to find changes in brain activity. EEG detection has the advantages of low cost, simple and easy to implement, and no physical harm and psychological stress to patients. Studies have shown that EEG signal might be useful in diagnosing stroke. By using machine learning methods, EEG signals can be used to classify stroke patients and normal subjects, or subtypes. Stroke is generally divided into two types: ischemic stroke and hemorrhagic stroke. How to classify ischemic and hemorrhagic strokes based on stroke patients' EEG data by constructing prediction model is the main purpose on this paper. In recent years, researchers have developed many technologies in the field of stroke classification prediction based on EEG signals, using a variety of machine learning methods to ensure the improvement of prediction accuracy. The typical methods usually extract the time domain, frequency domain or spatial domain features of EEG signals before establishing a stroke classification model. However, the quality of the extracted features cannot be guaranteed in stroke patient or subtype classification. In addition, EEG feature extraction is usually computationally expensive. The main goal of this paper is to propose a novel classification prediction model using an end-to-end deep neural network that avoids the process of manual feature extraction. This paper proposes a one-dimensional convolutional neural network (1D-CNN) classification model based on stroke EEG signal. The model includes four convolutional blocks, a global average pooling layer, a dropout layer, and a SoftMax layer. Each convolution block consists of two convolution layers and a pool layer for extracting features and reducing the number of parameters. A one-dimensional convolution kernel is used in order to match the characteristics of EEG one-dimensional time domain signal. The model can automatically extract the features of stroke EEG signal for classifying stroke by using convolutional layers. The EEG data of clinical stroke patients collected from the neurology department of a hospital are used in the experiments. Long Short-Term Memory (LSTM) model is also used as a benchmark to achieve end-to-end prediction for verifying the proposed model performance. The experimental results show that the proposed 1D-CNN prediction model has good prediction performance, with an accuracy of 90.53%, a precision of 87.90%, a sensitivity of 91.60%, and a specificity of 89.65%. It is much higher than the prediction result of LSTM model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜面包完成签到 ,获得积分20
1秒前
幽默海白完成签到,获得积分10
2秒前
冷傲水壶发布了新的文献求助10
3秒前
5秒前
司空豁应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
6秒前
现代的岩发布了新的文献求助10
7秒前
Akim应助舒庆春采纳,获得10
7秒前
123发布了新的文献求助10
8秒前
Simone完成签到 ,获得积分10
10秒前
10秒前
Kannan发布了新的文献求助10
10秒前
桐桐应助Auster采纳,获得30
12秒前
爱学习的根号三完成签到,获得积分10
13秒前
wang完成签到,获得积分10
13秒前
123完成签到,获得积分20
16秒前
17秒前
思睿拜完成签到,获得积分10
18秒前
18秒前
李爱国应助sc采纳,获得10
20秒前
顾矜应助高大的蜡烛采纳,获得10
22秒前
小洋完成签到 ,获得积分10
22秒前
顾矜应助想写文章的绿采纳,获得20
23秒前
23秒前
23秒前
等于几都行完成签到 ,获得积分10
25秒前
HEIKU应助帕金森采纳,获得10
28秒前
zhangyue7777完成签到,获得积分10
30秒前
30秒前
甜甜完成签到,获得积分20
31秒前
31秒前
32秒前
faith2002完成签到 ,获得积分10
32秒前
一般般发布了新的文献求助60
32秒前
阿呆发布了新的文献求助10
33秒前
科研r发布了新的文献求助10
35秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd Edition 4000
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3926832
求助须知:如何正确求助?哪些是违规求助? 3471455
关于积分的说明 10968322
捐赠科研通 3201318
什么是DOI,文献DOI怎么找? 1768706
邀请新用户注册赠送积分活动 857597
科研通“疑难数据库(出版商)”最低求助积分说明 796094