Drip irrigation improves spring wheat water productivity by reducing leaf area while increasing yield

环境科学 农学 滴灌 灌溉 蒸散量 亏缺灌溉 用水效率 天蓬 灌溉管理 生物 生态学
作者
Danni Yang,Sien Li,Mousong Wu,Hanbo Yang,Wenxin Zhang,Ji Chen,Chunyu Wang,Siyu Huang,Ruoqing Zhang,Yunxuan Zhang
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:143: 126710-126710 被引量:23
标识
DOI:10.1016/j.eja.2022.126710
摘要

To mitigate the climate change-induced water shortage and realize the sustainable development of agriculture, drip irrigation, a more efficient water-saving irrigation method, has been intensively implemented in most arid agricultural regions in the world. However, compared to traditional border irrigation, how drip irrigation affects the biophysical conditions in the cropland and how crops physiologically respond to changes in biophysical conditions in terms of water, heat and carbon exchange remain largely unknown. In view of the above situation, to reveal the mechanism of drip irrigation in improving spring wheat water productivity, paired field experiments based on drip irrigation and border irrigation were conducted to extensively monitor water and heat fluxes at a typical spring wheat field (Triticum aestivum L.) in Northwest China during 2017–2020. The results showed that drip irrigation improved yield by 10.3 % and crop water productivity (i.e., yield-to-evapotranspiration-ratio) by 15.6 %, but reduced LAI by 16.9 % in contrast with border irrigation. Under drip irrigation, the lateral development of spring wheat roots was promoted by higher soil temperature combined with frequent dry-wet alternation in the shallow soil layer (0–20 cm), which was the basis for efficient absorption of water and fertilizer, as well as efficient formation of photosynthate. Meanwhile, drip irrigation increased net radiation and decreased latent heat flux by inhibiting leaf growth, thereby increased sensible heat, causing a higher soil temperature (+1.10 ℃) and canopy temperature (+1.11 ℃). Further analysis proved that soil temperature was the key factor affecting yield formation. Based on the above conditions, the decrease in leaf distribution coefficient (−0.030) led to the decrease in evapotranspiration (−5.7 %) and the increase in ear distribution coefficient (+0.029). Therefore, drip irrigation emphasized the role of soil moisture in the soil-plant-atmosphere continuum, enhanced crop activity by increasing field temperature, especially soil temperature, and finally improved yield and water productivity via carbon reallocation. The study revealed the mechanism of drip irrigation for improving spring wheat yield, and would contribute to improving Earth system models in representing agricultural cropland ecosystems with drip irrigation and predicting the subsequent biophysical and biogeochemical feedbacks to climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沐飒发布了新的文献求助10
刚刚
鲲鹏发布了新的文献求助10
刚刚
领导范儿应助jqk采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
迷人可乐发布了新的文献求助10
1秒前
1秒前
西红柿红完成签到,获得积分10
2秒前
风语村发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817829
求助须知:如何正确求助?哪些是违规求助? 3361027
关于积分的说明 10411075
捐赠科研通 3079259
什么是DOI,文献DOI怎么找? 1691090
邀请新用户注册赠送积分活动 814309
科研通“疑难数据库(出版商)”最低求助积分说明 768075