亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient reconstruction of prior austenite grains in steel from etched light optical micrographs using deep learning and annotations from correlative microscopy

奥氏体 电子背散射衍射 材料科学 再结晶(地质) 人工智能 复合材料 微观结构 冶金 光学 计算机科学 地质学 物理 古生物学
作者
Björn-Ivo Bachmann,Martin Müller,Dominik Britz,Ali Riza Durmaz,Marc Ackermann,Oleg Shchyglo,Thorsten Staudt,Frank Mücklich
出处
期刊:Frontiers in Materials [Frontiers Media SA]
卷期号:9 被引量:14
标识
DOI:10.3389/fmats.2022.1033505
摘要

The high-temperature austenite phase is the initial state of practically all technologically relevant hot forming and heat treatment operations in steel processing. The phenomena occurring in austenite, such as recrystallization or grain growth, can have a decisive influence on the subsequent properties of the material. After the hot forming or heat treatment process, however, the austenite transforms into other microstructural constituents and information on the prior austenite morphology are no longer directly accessible. There are established methods available for reconstructing former austenite grain boundaries via metallographic etching or electron backscatter diffraction (EBSD) which both exhibit shortcomings. While etching is often difficult to reproduce and strongly depend on the investigated steel’s alloying concept, EBSD acquisition and reconstruction is rather time-consuming. But in fact, though, light optical micrographs of steels contrasted with conventional Nital etchant also contain information about the former austenite grains. However, relevant features are not directly apparent or accessible with conventional segmentation approaches. This work presents a deep learning (DL) segmentation of prior austenite grains (PAG) from Nital etched light optical micrographs. The basis for successful segmentation is a correlative characterization from EBSD, light and scanning electron microscopy to specify the ground truth required for supervised learning. The DL model shows good and robust segmentation results. While the intersection over union of 70% does not fully reflect the model performance due to the inherent uncertainty in PAG estimation, a mean error of 6.1% in mean grain size derived from the segmentation clearly shows the high quality of the result.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
顾矜应助纯真的柔采纳,获得10
3秒前
加菲丰丰举报求助违规成功
4秒前
kingwill举报求助违规成功
4秒前
GPTea举报求助违规成功
4秒前
4秒前
魏白晴完成签到,获得积分0
4秒前
医疗废物专用车乘客完成签到,获得积分10
6秒前
7秒前
qq完成签到 ,获得积分10
8秒前
寄托完成签到 ,获得积分10
8秒前
CodeCraft应助qyn1234566采纳,获得10
11秒前
12秒前
加菲丰丰举报求助违规成功
12秒前
关关过举报求助违规成功
13秒前
MchemG举报求助违规成功
13秒前
13秒前
dbaxia发布了新的文献求助10
13秒前
qq关注了科研通微信公众号
13秒前
沉鱼CXX完成签到,获得积分10
14秒前
猕猴桃发布了新的文献求助10
16秒前
17秒前
博弈完成签到 ,获得积分10
19秒前
20秒前
量子星尘发布了新的文献求助20
21秒前
Rational发布了新的文献求助10
22秒前
昊行天下完成签到 ,获得积分10
22秒前
加菲丰丰举报求助违规成功
24秒前
关关过举报求助违规成功
24秒前
GPTea举报求助违规成功
24秒前
24秒前
XueXiTong完成签到,获得积分10
24秒前
星辰大海应助珠子采纳,获得10
28秒前
辣椒完成签到 ,获得积分10
30秒前
dbaxia完成签到,获得积分10
34秒前
王双燕发布了新的文献求助10
37秒前
ivy发布了新的文献求助10
38秒前
黑马王子完成签到,获得积分10
43秒前
ding应助ivy采纳,获得10
48秒前
刘慧鑫发布了新的文献求助10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548989
求助须知:如何正确求助?哪些是违规求助? 4634415
关于积分的说明 14634428
捐赠科研通 4575749
什么是DOI,文献DOI怎么找? 2509284
邀请新用户注册赠送积分活动 1485264
关于科研通互助平台的介绍 1456346