Fe–N–C single-atom nanozymes based sensor array for dual signal selective determination of antioxidants

抗坏血酸 检出限 分析物 化学 分析化学(期刊) 组合化学 色谱法 食品科学
作者
Lihua Shen,Muhammad Arif Khan,Xianyong Wu,Jian Cai,Tian Lu,Tai Ning,Zhanmin Liu,Wencong Lu,Daixin Ye,Hongbin Zhao,Jiujun Zhang
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:205: 114097-114097 被引量:93
标识
DOI:10.1016/j.bios.2022.114097
摘要

Machine learning algorithms as a powerful tool can efficiently utilize and process large quantities of data generated by high-throughput experiments in various fields. In this work, we used a general ionic salt-assisted synthesis method to prepare oxidase-like Fe-N-C SANs. The possible reason for the excellent enzyme-mimicking activity and affinity of Fe-N-C SANs was further verified by density functional theory calculations. Due to the remarkable oxidase-mimicking activity, the prepared Fe-N-C SANs were used to detect ascorbic acid (AA) with a detection limit of 0.5 μM. Based on the machine learning algorithms, we successfully distinguished six antioxidants (ascorbic acid, glutathione, L-cysteine, dithiothreitol, uric acid, and dopamine) with the same concentration by either one kind of Fe-N-C SANs or three kinds of different Fe-N-C SANs. The usefulness of the Fe-N-C SANs sensor arrays was further validated by the hierarchal cluster analysis, where they also can be correctly identified. More importantly, a SANs-based digital-image colorimetric sensor array has also been successfully constructed and thereby achieved visual and informative colorimetric analysis for practical samples out of the lab. This work not only provides a design synthesis method to prepare SANs but also combines machine learning algorithms with SANs sensors to identify analytes with similar properties, which can further expand to the detection of proteins and cells related to diseases in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助Cymatics采纳,获得10
2秒前
搜集达人应助111采纳,获得10
2秒前
3秒前
4秒前
刻苦的友儿应助茜茜采纳,获得50
7秒前
wuyongmei完成签到,获得积分10
7秒前
Akoasm发布了新的文献求助10
8秒前
冷傲的薯片完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
完美冷安完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
大模型应助科研通管家采纳,获得10
12秒前
12秒前
华仔应助科研通管家采纳,获得10
12秒前
小青椒应助科研通管家采纳,获得30
13秒前
13秒前
13秒前
大模型应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
13秒前
华仔应助科研通管家采纳,获得10
13秒前
小青椒应助科研通管家采纳,获得30
13秒前
spc68应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
spc68应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
情怀应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761330
求助须知:如何正确求助?哪些是违规求助? 5529204
关于积分的说明 15399327
捐赠科研通 4897847
什么是DOI,文献DOI怎么找? 2634502
邀请新用户注册赠送积分活动 1582599
关于科研通互助平台的介绍 1537903