Machine-learning-accelerated design of functional structural components in deep-sea soft robots

机器人 适应性 静水压力 人工智能 灵活性(工程) 深度学习 深海 计算机科学 人工神经网络 工程类 地质学 生物 热力学 统计 生态学 海洋学 物理 数学
作者
Shunyu Yin,Zheng Jia,Xinge Li,Jiakai Zhu,Yi Xu,Tiefeng Li
出处
期刊:Extreme Mechanics Letters [Elsevier BV]
卷期号:52: 101635-101635 被引量:9
标识
DOI:10.1016/j.eml.2022.101635
摘要

To explore the deepest regions of the ocean with high flexibility and environmental adaptability, deep-sea soft robots have been developed recently. One prominent example is the self-powered soft robot that successfully operated in the Mariana Trench at a depth of 11,000 meters. Notably, many functional electronic components such as resistive elements, capacitors, and crystal oscillators may fail under extreme hydrostatic pressure, posing significant challenges for the practical massive deployment of deep-sea soft robots. Consequently, designing miniature pressure vessels on the printed circuit board to protect these vulnerable electronic components is vital for enhancing the reliability of deep-sea soft robots. However, traditional structure design methods – which often rely on theoretical analysis, experimental testing and numerical simulations – are often costly and time-consuming, especially for design problems in high-dimensional design spaces. Herein, we demonstrate a machine-learning-accelerated design method for devising miniature pressure vessels for vulnerable electronic components in deep-sea soft robots. Machine learning algorithms including decision trees and neural network models are employed and compared. The resulting design algorithm can predict whether a specific design can survive the deep-sea hydrostatic pressure with high accuracy in ∼0.35 ms, roughly seven orders of magnitude faster than traditional design methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
yoyo发布了新的文献求助10
5秒前
6秒前
脑洞疼应助书羽采纳,获得10
6秒前
拾野完成签到,获得积分10
8秒前
12秒前
14秒前
jenningseastera应助jody采纳,获得10
15秒前
书羽完成签到,获得积分10
15秒前
16秒前
17秒前
书羽发布了新的文献求助10
19秒前
20秒前
平凡中的限量版给平凡中的限量版的求助进行了留言
21秒前
科研通AI5应助nini采纳,获得30
21秒前
21秒前
xmz完成签到,获得积分10
22秒前
hy发布了新的文献求助10
23秒前
上官若男应助张文涛采纳,获得10
23秒前
24秒前
dyuephy完成签到,获得积分10
25秒前
Owen应助Sky36001采纳,获得10
27秒前
共享精神应助hy采纳,获得10
28秒前
凌风完成签到,获得积分10
31秒前
31秒前
33秒前
Ava应助科研通管家采纳,获得10
33秒前
li完成签到,获得积分10
33秒前
852应助科研通管家采纳,获得10
34秒前
共享精神应助科研通管家采纳,获得10
34秒前
科研通AI5应助科研通管家采纳,获得30
34秒前
Ava应助科研通管家采纳,获得20
34秒前
赘婿应助科研通管家采纳,获得10
34秒前
orixero应助科研通管家采纳,获得10
34秒前
NexusExplorer应助科研通管家采纳,获得10
34秒前
小蘑菇应助一二采纳,获得10
34秒前
科研通AI5应助科研通管家采纳,获得10
34秒前
桐桐应助科研通管家采纳,获得10
34秒前
orixero应助科研通管家采纳,获得10
35秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824330
求助须知:如何正确求助?哪些是违规求助? 3366627
关于积分的说明 10441769
捐赠科研通 3085883
什么是DOI,文献DOI怎么找? 1697631
邀请新用户注册赠送积分活动 816410
科研通“疑难数据库(出版商)”最低求助积分说明 769640