清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning applications for the accurate identification of low-transcriptional activity drugs and their mechanism of actions

机制(生物学) 药物重新定位 鉴定(生物学) 计算生物学 药品 接收机工作特性 药物发现 药理学 计算机科学 生物 机器学习 生物信息学 哲学 植物 认识论
作者
Shengqiao Gao,Lu Han,Dan Luo,Zhiyong Xiao,Gang Liu,Yongxiang Zhang,Wenxia Zhou
出处
期刊:Pharmacological Research [Elsevier BV]
卷期号:180: 106225-106225 被引量:5
标识
DOI:10.1016/j.phrs.2022.106225
摘要

Analysis of drug-induced expression profiles facilitated comprehensive understanding of drug properties. However, many compounds exhibit weak transcription responses though they mostly possess definite pharmacological effects. Actually, as a representative example, over 66.4% of 312,438 molecular signatures in the Library of Integrated Cellular Signatures (LINCS) database exhibit low-transcriptional activities (i.e. TAS-low signatures). When computing the association between TAS-low signatures with shared mechanism of actions (MOAs), commonly used algorithms showed inadequate performance with an average area under receiver operating characteristic curve (AUROC) of 0.55, but the computation accuracy of the same task can be improved by our developed tool Genetic profile activity relationship (GPAR) with an average AUROC of 0.68. Up to 36 out of 74 TAS-low MOAs were well trained with AUROC ≥ 0.7 by GPAR, higher than those by other approaches. Further studies showed that GPAR benefited from the size of training samples more significantly than other approaches. Lastly, in biological validation of the MOA prediction for a TAS-low drug Tropisetron, we found an unreported mechanism that Tropisetron can bind to the glucocorticoid receptor. This study indicated that GPAR can serve as an effective approach for the accurate identification of low-transcriptional activity drugs and their MOAs, thus providing a good tool for drug repurposing with both TAS-low and TAS-high signatures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满烙完成签到 ,获得积分10
刚刚
英俊的铭应助苏木采纳,获得10
刚刚
有米饭没完成签到 ,获得积分10
1秒前
愛研究完成签到,获得积分10
3秒前
耍酷的小海豚完成签到 ,获得积分10
3秒前
SCI完成签到 ,获得积分10
7秒前
8秒前
ooa4321完成签到,获得积分10
11秒前
绿袖子完成签到,获得积分10
12秒前
陈少华完成签到 ,获得积分10
13秒前
13秒前
雪花完成签到 ,获得积分10
18秒前
Cold-Drink-Shop完成签到,获得积分10
20秒前
Xieyusen发布了新的文献求助10
20秒前
wefor完成签到 ,获得积分10
23秒前
提莫silence完成签到 ,获得积分10
28秒前
31秒前
wangrblzu应助Duke采纳,获得20
32秒前
能干觅夏完成签到 ,获得积分10
33秒前
三脸茫然完成签到 ,获得积分10
47秒前
爆米花应助栾小鱼采纳,获得10
47秒前
51秒前
草莓熊1215完成签到 ,获得积分10
53秒前
54秒前
正直幼菱发布了新的文献求助10
54秒前
CodeCraft应助和谐的寒安采纳,获得10
56秒前
58秒前
喝酸奶不舔盖完成签到 ,获得积分10
58秒前
你博哥完成签到 ,获得积分10
1分钟前
栾小鱼发布了新的文献求助10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cmh完成签到 ,获得积分10
1分钟前
cdercder应助Jodie采纳,获得10
1分钟前
guantlv完成签到,获得积分10
1分钟前
小柒柒完成签到,获得积分10
1分钟前
Hiram完成签到,获得积分10
1分钟前
科研狗的春天完成签到 ,获得积分10
1分钟前
herpes完成签到 ,获得积分0
1分钟前
FangyingTang完成签到 ,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833895
求助须知:如何正确求助?哪些是违规求助? 3376330
关于积分的说明 10492632
捐赠科研通 3095861
什么是DOI,文献DOI怎么找? 1704730
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859