Predictive Model and Analysis of Psychological Depression Based on College Students’ Behavior Data Mining

萧条(经济学) 计算机科学 支持向量机 可靠性(半导体) 心理学 人工智能 机器学习 预测建模 构造(python库) 数据挖掘 临床心理学 程序设计语言 功率(物理) 经济 宏观经济学 物理 量子力学
作者
Dongchen Qu,Qing-Hua Guan
出处
期刊:Wireless Communications and Mobile Computing [Wiley]
卷期号:2022: 1-10 被引量:1
标识
DOI:10.1155/2022/5352283
摘要

Contemporary college students face all kinds of pressure and are easy to cause psychological problems. In order to make students and schools do a good job in preventing psychological depression, this paper proposes a student depression prediction model based on college students’ behavior data mining. Due to the shortcomings of large error and low reliability of prediction results in the traditional psychological depression prediction model, it is impossible to carry out large-scale psychological depression data analysis. In order to solve the defects of traditional psychological depression prediction model and improve the reliability of psychological depression prediction results, a psychological depression prediction model based on data mining technology is proposed. Firstly, the sensor is used to collect the signals related to psychological depression, and the signals are denoised to obtain high-quality psychological depression signals; then, the features are extracted from the psychological depression signals, and the support vector machine in data mining technology is used to train and learn the relationship between the features and the types of psychological depression, so as to construct the prediction model of psychological depression; finally, the simulation experiment of psychological depression prediction is carried out on MATLAB platform. The results show that the prediction accuracy of psychological depression of the traditional model is less than 85%, the prediction accuracy of psychological depression of the proposed model is more than 90%, and the time of psychological depression prediction modelling is reduced, which can meet the development trend of modern psychological depression prediction and analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cgs完成签到,获得积分10
刚刚
1秒前
怕高的土完成签到,获得积分10
4秒前
4秒前
Matthew完成签到 ,获得积分10
5秒前
冷静剑成发布了新的文献求助10
6秒前
7秒前
桃花落完成签到,获得积分10
7秒前
8秒前
9秒前
欣慰的发布了新的文献求助10
12秒前
cgs发布了新的文献求助10
13秒前
冷静剑成完成签到,获得积分10
13秒前
shannian完成签到,获得积分10
13秒前
Tohka完成签到 ,获得积分10
14秒前
14秒前
14秒前
15秒前
16秒前
slowfloat发布了新的文献求助10
17秒前
土豆··完成签到,获得积分10
18秒前
18秒前
慕青应助威士忌www采纳,获得10
20秒前
李白的白123完成签到,获得积分10
28秒前
Fff发布了新的文献求助10
28秒前
悦耳孤萍发布了新的文献求助10
30秒前
31秒前
33秒前
852应助san采纳,获得10
35秒前
小马甲应助科研通管家采纳,获得10
36秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
隐形曼青应助科研通管家采纳,获得10
36秒前
36秒前
威士忌www发布了新的文献求助10
37秒前
TRY发布了新的文献求助10
38秒前
39秒前
41秒前
小花花完成签到,获得积分10
44秒前
san发布了新的文献求助10
46秒前
好多好多鱼完成签到 ,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781926
求助须知:如何正确求助?哪些是违规求助? 3327450
关于积分的说明 10231409
捐赠科研通 3042382
什么是DOI,文献DOI怎么找? 1669975
邀请新用户注册赠送积分活动 799446
科研通“疑难数据库(出版商)”最低求助积分说明 758822