Multi-modal emotion recognition using EEG and speech signals

计算机科学 语音识别 脑电图 人工智能 支持向量机 稳健性(进化) 模式识别(心理学) 卷积神经网络 心理学 生物化学 化学 精神科 基因
作者
Qian Wang,Mou Wang,Yan Yang,Xiaolei Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:149: 105907-105907 被引量:54
标识
DOI:10.1016/j.compbiomed.2022.105907
摘要

Automatic Emotion Recognition (AER) is critical for naturalistic Human-Machine Interactions (HMI). Emotions can be detected through both external behaviors, e.g., tone of voice and internal physiological signals, e.g., electroencephalogram (EEG). In this paper, we first constructed a multi-modal emotion database, named Multi-modal Emotion Database with four modalities (MED4). MED4 consists of synchronously recorded signals of participants' EEG, photoplethysmography, speech and facial images when they were influenced by video stimuli designed to induce happy, sad, angry and neutral emotions. The experiment was performed with 32 participants in two environment conditions, a research lab with natural noises and an anechoic chamber. Four baseline algorithms were developed to verify the database and the performances of AER methods, Identification-vector + Probabilistic Linear Discriminant Analysis (I-vector + PLDA), Temporal Convolutional Network (TCN), Extreme Learning Machine (ELM) and Multi-Layer Perception Network (MLP). Furthermore, two fusion strategies on feature-level and decision-level respectively were designed to utilize both external and internal information of human status. The results showed that EEG signals generate higher accuracy in emotion recognition than that of speech signals (achieving 88.92% in anechoic room and 89.70% in natural noisy room vs 64.67% and 58.92% respectively). Fusion strategies that combine speech and EEG signals can improve overall accuracy of emotion recognition by 25.92% when compared to speech and 1.67% when compared to EEG in anechoic room and 31.74% and 0.96% in natural noisy room. Fusion methods also enhance the robustness of AER in the noisy environment. The MED4 database will be made publicly available, in order to encourage researchers all over the world to develop and validate various advanced methods for AER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
健壮不斜完成签到 ,获得积分10
2秒前
3秒前
天天快乐应助炙热灰狼采纳,获得10
3秒前
zhizhiman发布了新的文献求助10
5秒前
7秒前
积极鱼完成签到 ,获得积分10
8秒前
科研通AI5应助kelly采纳,获得10
12秒前
shadow发布了新的文献求助10
12秒前
13秒前
帕金森完成签到,获得积分10
14秒前
14秒前
炙热灰狼发布了新的文献求助10
18秒前
李铛铛发布了新的文献求助10
20秒前
姜水完成签到,获得积分10
22秒前
我是老大应助shadow采纳,获得10
23秒前
27秒前
风吹草动玉米粒完成签到,获得积分10
30秒前
小池由希完成签到 ,获得积分10
32秒前
伶俐的无颜完成签到 ,获得积分10
32秒前
ccccchen完成签到,获得积分10
32秒前
suyanan完成签到 ,获得积分10
33秒前
34秒前
854fycchjh完成签到,获得积分10
34秒前
35秒前
acadedog完成签到 ,获得积分10
36秒前
Akim应助fcgcgfcgf采纳,获得10
40秒前
sdfwsdfsd完成签到,获得积分10
41秒前
顺利念柏发布了新的文献求助10
41秒前
42秒前
45秒前
kelly发布了新的文献求助10
47秒前
猛男完成签到,获得积分10
50秒前
杨春雪给杨春雪的求助进行了留言
50秒前
慕青应助在下小李采纳,获得10
51秒前
cdercder应助元宵宵采纳,获得20
53秒前
顺利念柏完成签到,获得积分10
55秒前
炙热灰狼完成签到,获得积分10
1分钟前
xiaosu发布了新的文献求助30
1分钟前
善良的西瓜完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777121
求助须知:如何正确求助?哪些是违规求助? 3322541
关于积分的说明 10210567
捐赠科研通 3037872
什么是DOI,文献DOI怎么找? 1666940
邀请新用户注册赠送积分活动 797860
科研通“疑难数据库(出版商)”最低求助积分说明 758059