Similarity searching

相似性(几何) 直觉 最近邻搜索 计算机科学 排名(信息检索) 化学相似性 情报检索 人气 数据挖掘 人工智能 结构相似性 心理学 认知科学 社会心理学 图像(数学)
作者
Dagmar Stumpfe,Jürgen Bajorath
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:1 (2): 260-282 被引量:112
标识
DOI:10.1002/wcms.23
摘要

Abstract Similarity searching is one of the traditional and most widely applied approaches in chemical and pharmaceutical research to select compounds with desired properties from databases. The computational efficiency of many (but not all) similarity search techniques has further increased their popularity as compound databases began to rapidly grow in size. Different methods have been developed for small molecule similarity searching. However, foundations and intrinsic limitations of similarity searching are often not well understood, although a number of similarity methods are rather simplistic. Regardless of methodological details, all similarity search approaches depend on how molecular similarity is evaluated and quantified. In its essence, molecular similarity is a subjective concept and much dependent on how we represent and view molecular structures. Moreover, trying to understand the relationship between molecular similarity, however assessed, and structure‐dependent properties including, first and foremost, biological activity continues to be a challenging problem. Consequently, although similarity searching usually provides a quantitative readout and a ranking of compounds relative to chosen reference molecules, predicting structure–activity relationships on the basis of calculated similarity values often involves subjective criteria and chemical intuition. Thus, similarity searching is still far from being a routine application in database mining. In this review, we first discuss important principles underlying similarity searching, describe its tasks, and introduce major categories of search methods. Then, we focus on molecular fingerprints, the design and application of which can be regarded as a paradigm for the similarity search field. © 2011 John Wiley & Sons, Ltd. WIREs Comput Mol Sci 2011 1 260‐282 DOI: 10.1002/wcms.23 This article is categorized under: Computer and Information Science > Databases and Expert Systems
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良的沛山完成签到,获得积分10
刚刚
刚刚
吱吱组织杂质完成签到,获得积分10
1秒前
坚强的冰香完成签到,获得积分10
2秒前
Jasper应助陶醉的蜜蜂采纳,获得10
3秒前
3秒前
5秒前
6秒前
wisher发布了新的文献求助10
7秒前
重要觅风发布了新的文献求助10
7秒前
7秒前
HB完成签到,获得积分10
9秒前
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
9秒前
哈基米德应助科研通管家采纳,获得40
9秒前
浮游应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
bji完成签到,获得积分10
10秒前
Rita应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
刘大米发布了新的文献求助10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
10秒前
无极微光应助科研通管家采纳,获得20
10秒前
10秒前
Summer完成签到,获得积分10
10秒前
11秒前
义气的帅哥完成签到,获得积分10
11秒前
11秒前
13秒前
13秒前
lyk2815发布了新的文献求助10
14秒前
vpothello发布了新的文献求助10
16秒前
YCH完成签到,获得积分10
16秒前
爱科研的小多肉完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194604
求助须知:如何正确求助?哪些是违规求助? 4376857
关于积分的说明 13630554
捐赠科研通 4232015
什么是DOI,文献DOI怎么找? 2321314
邀请新用户注册赠送积分活动 1319495
关于科研通互助平台的介绍 1269832