Generalized Collinearity Diagnostics

共线性 数学 统计 应用数学
作者
John P. Fox,Georges Monette
标识
DOI:10.2307/2290467
摘要

Abstract Working in the context of the linear model y = Xβ + ε, we generalize the concept of variance inflation as a measure of collinearity to a subset of parameters in β (denoted by β 1, with the associated columns of X given by X 1). The essential idea underlying this generalization is to examine the impact on the precision of estimation—in particular, the size of an ellipsoidal joint confidence region for β 1—of less-than-optimal selection of other columns of the design matrix (X 2), treating still other columns (X 0) as unalterable, even hypothetically. In typical applications, X 1 contains a set of dummy regressors coding categories of a qualitative variable or a set of polynomial regressors in a quantitative variable; X 2 contains all other regressors in the model, save the constant, which is in X 0. If σ 2 V denotes the realized variance of , and σ 2 U is the variance associated with an optimal selection of X 2, then the corresponding scaled dispersion ellipsoids to be compared are ℰ v = {x : x′V –1 x ≤ 1} and ℰ U = {x : x′U –1 x ≤ 1}, where ℰ U is contained in ℰ v . The two ellipsoids can be compared by considering the radii of ℰ v relative to ℰ U , obtained through the spectral decomposition of V relative to U. We proceed to explore the geometry of generalized variance inflation, to show the relationship of these measures to correlation-matrix determinants and canonical correlations, to consider X matrices structured by relations of marginality among regressor subspaces, to develop the relationship of generalized variance inflation to hypothesis tests in the multivariate normal linear model, and to present several examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mirror应助笨笨绮南采纳,获得10
刚刚
汉堡包应助嘻嘻嘻采纳,获得10
刚刚
FashionBoy应助笨笨绮南采纳,获得10
刚刚
善良诗珊完成签到,获得积分10
刚刚
缪莛发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
大鱼完成签到,获得积分10
1秒前
戈多来了发布了新的文献求助10
2秒前
深情安青应助戈壁风骨采纳,获得10
2秒前
魈玖发布了新的文献求助10
2秒前
故酒应助静谧180采纳,获得10
2秒前
我爱Chem完成签到 ,获得积分10
2秒前
tang完成签到,获得积分10
2秒前
lilyvan完成签到 ,获得积分10
2秒前
小漆完成签到,获得积分10
2秒前
不爱吃鱼的猫完成签到,获得积分10
2秒前
tdd关闭了tdd文献求助
3秒前
阿宋发布了新的文献求助10
3秒前
3秒前
芥末汤圆完成签到,获得积分10
3秒前
标致小土豆完成签到 ,获得积分10
3秒前
3秒前
shiizii应助jade257采纳,获得30
3秒前
大意的罡发布了新的文献求助10
4秒前
鱼遇完成签到,获得积分10
4秒前
4秒前
猫猫完成签到 ,获得积分10
4秒前
王诗翔发布了新的文献求助10
4秒前
烂漫的衬衫完成签到,获得积分10
5秒前
5秒前
5秒前
ttdwx完成签到,获得积分10
5秒前
大鱼发布了新的文献求助10
5秒前
zzzzzd完成签到,获得积分10
6秒前
6秒前
6秒前
cake777发布了新的文献求助10
6秒前
JinwenShi完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708501
求助须知:如何正确求助?哪些是违规求助? 5188470
关于积分的说明 15254044
捐赠科研通 4861497
什么是DOI,文献DOI怎么找? 2609497
邀请新用户注册赠送积分活动 1560013
关于科研通互助平台的介绍 1517781