A novel protein‐based prognostic signature improves risk stratification to guide clinical management in early‐stage lung adenocarcinoma patients

医学 肿瘤科 队列 内科学 病态的 肺癌 比例危险模型 病理分期 腺癌 阶段(地层学) 癌症 生物 古生物学
作者
Elena Martínez‐Terroba,Carmen Behrens,Fernando J. de Miguel,Jackeline Agorreta,Eduard Monsó,Laura Millares,Cristina Sainz,Miguel Mesa,José Luis Perez‐Gracia,María D. Lozano,Javier J. Zulueta,Rubén Pı́o,Ignacio I. Wistuba,Luis M. Montuenga,María J. Pajares
标识
DOI:10.1002/path.5096
摘要

Abstract Each of the pathological stages (I–IIIa) of surgically resected non‐small‐cell lung cancer has hidden biological heterogeneity, manifested as heterogeneous outcomes within each stage. Thus, the finding of robust and precise molecular classifiers with which to assess individual patient risk is an unmet medical need. Here, we identified and validated the clinical utility of a new prognostic signature based on three proteins (BRCA1, QKI, and SLC2A1) to stratify early‐stage lung adenocarcinoma patients according to their risk of recurrence or death. Patients were staged according to the new International Association for the Study of Lung Cancer (IASLC) staging criteria (8th edition, 2018). A test cohort ( n = 239) was used to assess the value of this new prognostic index (PI) based on the three proteins. The prognostic signature was developed by Cox regression with the use of stringent statistical criteria (TRIPOD: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis). The model resulted in a highly significant predictor of 5‐year outcome for disease‐free survival ( p < 0.001) and overall survival ( p < 0.001). The prognostic ability of the model was externally validated in an independent multi‐institutional cohort of patients ( n = 114, p = 0.021). We also demonstrated that this molecular classifier adds relevant information to the gold standard TNM‐based pathological staging, with a highly significant improvement of the likelihood ratio. We subsequently developed a combined PI including both the molecular and the pathological data that improved the risk stratification in both cohorts ( p ≤ 0.001). Moreover, the signature may help to select stage I–IIA patients who might benefit from adjuvant chemotherapy. In summary, this protein‐based signature accurately identifies those patients with a high risk of recurrence and death, and adds further prognostic information to the TNM‐based clinical staging, even when the new IASLC 8th edition staging criteria are applied. More importantly, it may be a valuable tool for selecting patients for adjuvant therapy. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
hanguyu发布了新的文献求助20
1秒前
传奇3应助huhuhuuh采纳,获得10
1秒前
3秒前
4秒前
5秒前
CP发布了新的文献求助10
5秒前
hh发布了新的文献求助10
6秒前
6秒前
斯文败类应助王大纯采纳,获得10
6秒前
koko完成签到,获得积分10
6秒前
搜集达人应助合适的代秋采纳,获得10
6秒前
王颖超发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
Owen应助hilda采纳,获得10
8秒前
安赛虫发布了新的文献求助10
10秒前
CodeCraft应助动听衬衫采纳,获得10
10秒前
酷酷的安柏完成签到 ,获得积分10
11秒前
乔钰涵发布了新的文献求助10
12秒前
红红完成签到,获得积分10
13秒前
14秒前
14秒前
CodeCraft应助追风采纳,获得10
14秒前
Jsl发布了新的文献求助10
14秒前
14秒前
XYX9910完成签到,获得积分10
14秒前
shen完成签到 ,获得积分10
15秒前
15秒前
15秒前
15秒前
jh完成签到 ,获得积分10
16秒前
DungHoang完成签到,获得积分10
17秒前
李唐定针完成签到,获得积分10
18秒前
现代的小馒头完成签到,获得积分10
18秒前
FAYYE发布了新的文献求助10
18秒前
ding应助星之卡比泡泡机采纳,获得10
18秒前
美丽雪冥发布了新的文献求助10
19秒前
科研通AI6应助qingsi采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532433
求助须知:如何正确求助?哪些是违规求助? 4621191
关于积分的说明 14577130
捐赠科研通 4561052
什么是DOI,文献DOI怎么找? 2499136
邀请新用户注册赠送积分活动 1479070
关于科研通互助平台的介绍 1450318