Modification of ITO anodes with self-assembled monolayers for enhancing hole injection in OLEDs

有机发光二极管 X射线光电子能谱 紫外光电子能谱 工作职能 氧化铟锡 自组装单层膜 轨道能级差 单层 材料科学 表面改性 分子 接触角 电致发光 光电子学 化学 图层(电子) 化学工程 纳米技术 物理化学 有机化学 复合材料 工程类
作者
Dong An,Hongli Liu,Shirong Wang,Xianggao Li
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:114 (15) 被引量:25
标识
DOI:10.1063/1.5086800
摘要

Increasing carrier injection efficiency is an important way to improve the performance of organic light-emitting diodes (OLEDs). In this work, self-assembled monolayers (SAMs) were formed on indium tin oxide (ITO) anodes with different aromatic carboxylic acids. The relationship between the molecular structure and its effect on modification was investigated. The presence of monolayers was verified by X-ray photoelectron spectroscopy. Water contact angle tests show that the surface energy of ITO has decreased after SAM modification which is beneficial to obtain a flat film of organic functional materials on ITO. In addition, the data of ultraviolet photoelectron spectroscopy reveal that the work function of SAM-ITO with different molecules modified has increased to varying degrees. Therefore, a no-hole injection layer (HIL) device whose structure is ITO/SAMs/α-naphthyphenylbiphenyldiamine (NPB) (25 nm)/tris(8-hydroxyquindino) aluminum (III) (Alq3) (60 nm)/LiF (1 nm)/Al (100 nm) was designed to explore the impact of SAMs on OLEDs. OLED performance shows SAMs of 9H-carbazole-2-carboxylic acid (CzCA) facilitating the device to obtain superior luminescence performance, with a turn-on voltage of 2.6 V and a maximum luminance of 30 418 cd·m−2. In order to study the mechanism, the highest occupied molecular orbital (HOMO) and other information of SAM molecules were calculated by Gaussian 09. According to the result, the HOMO of CzCA appears as a special “through-band,” which is beneficial to the hole transport. It is considered that when the HOMO of the SAM molecule is in a shape favorable for hole transport, hole injection will be facilitated and the performance of the OLEDs will be improved greatly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助风吹水响采纳,获得10
1秒前
2秒前
2秒前
思源应助俭朴的世界采纳,获得10
2秒前
3秒前
cheyu123完成签到,获得积分10
3秒前
风趣幻枫发布了新的文献求助10
3秒前
ddvcn发布了新的文献求助10
4秒前
4秒前
6秒前
3131879775发布了新的文献求助10
7秒前
Jasmine发布了新的文献求助10
7秒前
星辰大海应助zhzssaijj采纳,获得10
8秒前
CipherSage应助zhzssaijj采纳,获得10
8秒前
wangsai0532完成签到,获得积分10
10秒前
小荔枝发布了新的文献求助20
11秒前
12秒前
12秒前
13秒前
soso完成签到,获得积分10
15秒前
15秒前
17秒前
17秒前
17秒前
lllllty发布了新的文献求助10
18秒前
ZKHIT发布了新的文献求助200
18秒前
虚拟的柠檬完成签到,获得积分10
19秒前
19秒前
19秒前
Hans应助体贴花卷采纳,获得30
20秒前
纯牛奶发布了新的文献求助20
20秒前
小马甲应助科研通管家采纳,获得10
20秒前
斯文败类应助科研通管家采纳,获得10
20秒前
李爱国应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
诗琪应助科研通管家采纳,获得10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
Singularity应助科研通管家采纳,获得10
21秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899995
求助须知:如何正确求助?哪些是违规求助? 3444576
关于积分的说明 10835664
捐赠科研通 3169542
什么是DOI,文献DOI怎么找? 1751145
邀请新用户注册赠送积分活动 846591
科研通“疑难数据库(出版商)”最低求助积分说明 789269