Patch-Based Dual-Tree Complex Wavelet Transform for Kinship Recognition

复小波变换 亲属关系 模式识别(心理学) 人工智能 计算机科学 数学 图像(数学) 小波变换 小波 离散小波变换 政治学 法学
作者
Aarti Goyal,Toshanlal Meenpal
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 191-206 被引量:37
标识
DOI:10.1109/tip.2020.3034027
摘要

Kinship recognition is a prominent research aiming to find if kinship relation exists between two different individuals. In general, child closely resembles his/her parents more than others based on facial similarities. These similarities are due to genetically inherited facial features that a child shares with his/her parents. Most existing researches in kinship recognition focus on full facial images to find these kinship similarities. This paper first presents kinship recognition for similar full facial images using proposed Global-based dual-tree complex wavelet transform (G-DTCWT). We then present novel patch-based kinship recognition methods based on dual-tree complex wavelet transform (DT-CWT): Local Patch-based DT-CWT (LP-DTCWT) and Selective Patch-Based DT-CWT (SP-DTCWT). LP-DTCWT extracts coefficients for smaller facial patches for kinship recognition. SP-DTCWT is an extension to LP-DTCWT and extracts coefficients only for representative patches with similarity scores above a normalized cumulative threshold. This threshold is computed by a novel patch selection process. These representative patches contribute more similarities in parent/child image pairs and improve kinship accuracy. Proposed methods are extensively evaluated on different publicly available kinship datasets to validate kinship accuracy. Experimental results showcase efficacy of proposed methods on all kinship datasets. SP-DTCWT achieves competitive accuracy to state-of-the-art methods. Mean kinship accuracy of SP-DTCWT is 95.85% on baseline KinFaceW-I and 95.30% on KinFaceW-II datasets. Further, SP-DTCWT achieves the state-of-the-art accuracy of 80.49% on the largest kinship dataset, Families In the Wild (FIW).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北北发布了新的文献求助10
刚刚
1秒前
科研通AI5应助故里采纳,获得10
4秒前
4秒前
哈哈一世完成签到,获得积分10
5秒前
辣辣发布了新的文献求助10
5秒前
5秒前
深情安青应助开朗以亦采纳,获得10
5秒前
6秒前
小蘑菇应助Jason采纳,获得10
6秒前
舒心的万声完成签到,获得积分10
7秒前
cherish发布了新的文献求助10
8秒前
8秒前
isukini完成签到,获得积分10
9秒前
NexusExplorer应助222采纳,获得10
9秒前
9秒前
11秒前
简单面包发布了新的文献求助10
11秒前
11秒前
11秒前
科研通AI5应助听雨潇潇采纳,获得10
12秒前
冉旭完成签到,获得积分10
12秒前
专注梦之完成签到,获得积分10
12秒前
小高完成签到 ,获得积分10
13秒前
香蕉觅云应助孙一莎采纳,获得10
13秒前
lierikafei发布了新的文献求助10
13秒前
科研通AI5应助李亚莉采纳,获得10
14秒前
yu完成签到,获得积分10
14秒前
复杂不二完成签到,获得积分10
15秒前
16秒前
HL发布了新的文献求助10
16秒前
诗轩发布了新的文献求助10
16秒前
我是老大应助xjp采纳,获得10
18秒前
18秒前
18秒前
Snowychen完成签到,获得积分10
19秒前
20秒前
mb发布了新的文献求助10
21秒前
22秒前
22秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351563
关于积分的说明 10354783
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684500
邀请新用户注册赠送积分活动 809737
科研通“疑难数据库(出版商)”最低求助积分说明 765635