Mechanical Immunoengineering of T cells for Therapeutic Applications

免疫系统 免疫疗法 嵌合抗原受体 癌症免疫疗法 旁观者效应 获得性免疫系统 癌症 免疫学 T细胞 医学 生物 癌症研究 内科学
作者
Kewen Lei,Armand Kurum,Li Tang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:53 (12): 2777-2790 被引量:35
标识
DOI:10.1021/acs.accounts.0c00486
摘要

ConspectusT cells, a key component in adaptive immunity, are central to many immunotherapeutic modalities aimed at treating various diseases including cancer, infectious diseases, and autoimmune disorders. The past decade has witnessed tremendous progress in immunotherapy, which aims at activation or suppression of the immune responses for disease treatments. Most strikingly, cancer immunotherapy has led to curative responses in a fraction of patients with relapsed or refractory cancers. However, extending those clinical benefits to a majority of cancer patients remains challenging. In order to improve both efficacy and safety of T cell-based immunotherapies, significant effort has been devoted to modulating biochemical signals to enhance T cell proliferation, effector functions, and longevity. Such strategies include discovery of new immune checkpoints, design of armored chimeric antigen receptor (CAR) T cells, and targeted delivery of stimulatory cytokines and so on.Despite the intense global research effort in developing novel cancer immunotherapies, a major dimension of the interactions between cancer and the immune system, its biomechanical aspect, has been largely underappreciated. Throughout their lifecycle, T cells constantly survey a multitude of organs and tissues and experience diverse biomechanical environments, such as shear force in the blood flow and a broad range of tissue stiffness. Furthermore, biomechanical properties of tissues or cells may be altered in disease and inflammation. Biomechanical cues, including both passive mechanical cues and active mechanical forces, have been shown to govern T cell development, activation, migration, differentiation, and effector functions. In other words, T cells can sense, respond to, and adapt to both passive mechanical cues and active mechanical forces.Biomechanical cues have been intensively studied at a fundamental level but are yet to be extensively incorporated in the design of immunotherapies. Nonetheless, the growing knowledge of T cell mechanobiology has formed the basis for the development of novel engineering strategies to mechanically modulate T cell immunity, a nascent field that we termed "mechanical immunoengineering". Mechanical immunoengineering exploits biomechanical cues (e.g., stiffness and external forces) to modulate T cell differentiation, proliferation, effector functions, etc., for diagnostic or therapeutic applications. It provides an additional dimension, complementary to traditional modulation of biochemical cues (e.g., antigen density and co-stimulatory signals), to tailor T cell immune responses and enhance therapeutic outcomes. For example, stiff antigen-presenting matrices have been shown to enhance T cell proliferation independently of the intensity of biochemical stimulatory signals. Current strategies of mechanical immunoengineering of T cells can be categorized into two major fields including passive mechanical cue-oriented and active force-oriented strategies. In this Account, we first present a brief overview of T cell mechanobiology. Next, we summarize recent advances in mechanical immunoengineering, discuss the roles of chemistry and material science in the development of these engineering strategies, and highlight potential therapeutic applications. Finally, we present our perspective on the future directions in mechanical immunoengineering and critical steps to translate mechanical immunoengineering strategies into therapeutic applications in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助ardejiang采纳,获得10
1秒前
Hello应助wen采纳,获得10
1秒前
科研宋宋发布了新的文献求助30
1秒前
铭铭铭发布了新的文献求助10
1秒前
kevin完成签到,获得积分10
2秒前
领导范儿应助同学少年2021采纳,获得10
2秒前
Biophilia发布了新的文献求助50
2秒前
汉堡包应助lishanner采纳,获得10
2秒前
Amber完成签到,获得积分10
3秒前
3秒前
3秒前
小高发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
hugh完成签到,获得积分10
6秒前
7秒前
糖醋排骨完成签到 ,获得积分10
7秒前
7秒前
gfhdf完成签到,获得积分10
7秒前
科研助手6应助wjy321采纳,获得10
8秒前
lcj1014完成签到,获得积分10
8秒前
8秒前
weiweiwu12发布了新的文献求助10
9秒前
9秒前
铭铭铭完成签到,获得积分10
10秒前
10秒前
joey完成签到,获得积分10
10秒前
ccc完成签到,获得积分10
10秒前
访云完成签到 ,获得积分10
10秒前
chandlerwong完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
躺平girl发布了新的文献求助10
12秒前
轻松沛凝完成签到,获得积分10
12秒前
13秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817454
求助须知:如何正确求助?哪些是违规求助? 3360792
关于积分的说明 10409392
捐赠科研通 3078887
什么是DOI,文献DOI怎么找? 1690844
邀请新用户注册赠送积分活动 814169
科研通“疑难数据库(出版商)”最低求助积分说明 768060