亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mechanical Immunoengineering of T cells for Therapeutic Applications

免疫系统 免疫疗法 嵌合抗原受体 癌症免疫疗法 旁观者效应 获得性免疫系统 癌症 免疫学 T细胞 医学 生物 癌症研究 内科学
作者
Kewen Lei,Armand Kurum,Li Tang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:53 (12): 2777-2790 被引量:35
标识
DOI:10.1021/acs.accounts.0c00486
摘要

ConspectusT cells, a key component in adaptive immunity, are central to many immunotherapeutic modalities aimed at treating various diseases including cancer, infectious diseases, and autoimmune disorders. The past decade has witnessed tremendous progress in immunotherapy, which aims at activation or suppression of the immune responses for disease treatments. Most strikingly, cancer immunotherapy has led to curative responses in a fraction of patients with relapsed or refractory cancers. However, extending those clinical benefits to a majority of cancer patients remains challenging. In order to improve both efficacy and safety of T cell-based immunotherapies, significant effort has been devoted to modulating biochemical signals to enhance T cell proliferation, effector functions, and longevity. Such strategies include discovery of new immune checkpoints, design of armored chimeric antigen receptor (CAR) T cells, and targeted delivery of stimulatory cytokines and so on.Despite the intense global research effort in developing novel cancer immunotherapies, a major dimension of the interactions between cancer and the immune system, its biomechanical aspect, has been largely underappreciated. Throughout their lifecycle, T cells constantly survey a multitude of organs and tissues and experience diverse biomechanical environments, such as shear force in the blood flow and a broad range of tissue stiffness. Furthermore, biomechanical properties of tissues or cells may be altered in disease and inflammation. Biomechanical cues, including both passive mechanical cues and active mechanical forces, have been shown to govern T cell development, activation, migration, differentiation, and effector functions. In other words, T cells can sense, respond to, and adapt to both passive mechanical cues and active mechanical forces.Biomechanical cues have been intensively studied at a fundamental level but are yet to be extensively incorporated in the design of immunotherapies. Nonetheless, the growing knowledge of T cell mechanobiology has formed the basis for the development of novel engineering strategies to mechanically modulate T cell immunity, a nascent field that we termed "mechanical immunoengineering". Mechanical immunoengineering exploits biomechanical cues (e.g., stiffness and external forces) to modulate T cell differentiation, proliferation, effector functions, etc., for diagnostic or therapeutic applications. It provides an additional dimension, complementary to traditional modulation of biochemical cues (e.g., antigen density and co-stimulatory signals), to tailor T cell immune responses and enhance therapeutic outcomes. For example, stiff antigen-presenting matrices have been shown to enhance T cell proliferation independently of the intensity of biochemical stimulatory signals. Current strategies of mechanical immunoengineering of T cells can be categorized into two major fields including passive mechanical cue-oriented and active force-oriented strategies. In this Account, we first present a brief overview of T cell mechanobiology. Next, we summarize recent advances in mechanical immunoengineering, discuss the roles of chemistry and material science in the development of these engineering strategies, and highlight potential therapeutic applications. Finally, we present our perspective on the future directions in mechanical immunoengineering and critical steps to translate mechanical immunoengineering strategies into therapeutic applications in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dlfg完成签到,获得积分10
9秒前
L_MD完成签到,获得积分10
17秒前
迷人问兰发布了新的文献求助10
37秒前
38秒前
51秒前
53秒前
liubing0426发布了新的文献求助10
57秒前
爆米花应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
尼可深蓝完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
GGGrigor完成签到,获得积分10
1分钟前
儒雅HR完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
长情半邪完成签到 ,获得积分10
2分钟前
anders完成签到 ,获得积分10
2分钟前
鲜艳的烧鹅完成签到,获得积分10
2分钟前
结实芝麻完成签到 ,获得积分10
2分钟前
PingxuZhang完成签到,获得积分10
3分钟前
yuan完成签到,获得积分10
3分钟前
天天快乐应助科研通管家采纳,获得30
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
3分钟前
程cc完成签到,获得积分10
3分钟前
3分钟前
3分钟前
shaylie完成签到 ,获得积分10
3分钟前
程cc发布了新的文献求助10
3分钟前
pp‘s完成签到 ,获得积分10
3分钟前
未央完成签到,获得积分10
3分钟前
3分钟前
3分钟前
哈哈哈发布了新的文献求助10
3分钟前
(●'◡'●)发布了新的文献求助10
3分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949951
求助须知:如何正确求助?哪些是违规求助? 3495184
关于积分的说明 11075820
捐赠科研通 3225768
什么是DOI,文献DOI怎么找? 1783196
邀请新用户注册赠送积分活动 867514
科研通“疑难数据库(出版商)”最低求助积分说明 800835