Network analysis for the symptom of depression with Children's Depression Inventory in a large sample of school-aged children

悲伤 孤独 无血性 心理学 萧条(经济学) 临床心理学 友谊 抑郁症状 精神科 愤怒 发展心理学 焦虑 精神分裂症(面向对象编程) 经济 宏观经济学 社会心理学
作者
Dohyun Kim,Ho‐Jang Kwon,Mina Ha,Myung Ho Lim,Kyoung Min Kim
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:281: 256-263 被引量:31
标识
DOI:10.1016/j.jad.2020.12.002
摘要

Background: Depressive disorders have various symptom presentations, which may have complex and dynamic interactions. This study aimed to investigate the network structures underlying the symptoms and to identify the central symptoms of depression in school-aged children. Methods: Participants were a large community sample of elementary school children aged 6 to 12 years (N = 10,233). To assess the depressive symptoms, we utilized the Children's Depression Inventory (CDI). We binarized the scores on the CDI to generate a symptom network using the eLasso method, based on the Ising model. We evaluated the centralities in individual symptoms using the network centrality indices and the associations between symptoms. Results: Of the symptoms, loneliness, self-hatred, school dislike, and low self-esteem were the most central symptoms in the network of depressive symptoms. School work difficulty–school performance decrement, sadness–crying, self-hatred–negative body image, low self-esteem–fight, anhedonia–school dislike, sadness–loneliness, self-deprecation–school work difficulty, and school dislike–lack of friendship had significantly higher edge weight than most edges. The estimated network between the symptoms was robust to stability and accuracy tests. Limitations: Participants were not clinical but community samples, who show lower level of symptoms. Conclusion: The present symptom network analysis provided important insights on various interconnectivities between individual symptoms in childhood depression and on the central symptoms. In addition, our findings presented both similarities and differences with a previous Western study, thus, warranting future cross-cultural studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
澄碧千顷完成签到 ,获得积分10
12秒前
滴滴完成签到 ,获得积分10
27秒前
祁尒完成签到,获得积分10
27秒前
ocean完成签到,获得积分10
30秒前
包容的忆灵完成签到 ,获得积分10
31秒前
morry5007完成签到,获得积分10
31秒前
呆萌滑板完成签到 ,获得积分10
32秒前
莎莎完成签到 ,获得积分10
32秒前
35秒前
xiaoxioayixi完成签到 ,获得积分10
38秒前
town1223完成签到 ,获得积分10
41秒前
小粒橙完成签到 ,获得积分10
42秒前
digger2023完成签到 ,获得积分10
48秒前
DNAdamage完成签到,获得积分10
54秒前
林夕完成签到 ,获得积分10
1分钟前
快乐的完成签到 ,获得积分10
1分钟前
安详映阳完成签到 ,获得积分10
1分钟前
HCT完成签到,获得积分10
1分钟前
ng完成签到 ,获得积分10
1分钟前
1分钟前
我睡觉的时候不困完成签到 ,获得积分10
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
南风完成签到 ,获得积分10
1分钟前
全球免费科研1完成签到 ,获得积分10
1分钟前
Yolo完成签到 ,获得积分10
1分钟前
chenbin完成签到,获得积分10
1分钟前
钟声完成签到,获得积分0
1分钟前
肖果完成签到 ,获得积分10
1分钟前
Silence完成签到,获得积分10
1分钟前
hebhm完成签到,获得积分10
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
1002SHIB完成签到,获得积分10
1分钟前
nihaolaojiu完成签到,获得积分10
1分钟前
1分钟前
sheetung完成签到,获得积分10
1分钟前
快乐冰之完成签到 ,获得积分10
1分钟前
饱满烙完成签到 ,获得积分10
1分钟前
2分钟前
十七完成签到 ,获得积分10
2分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788347
求助须知:如何正确求助?哪些是违规求助? 3333722
关于积分的说明 10263216
捐赠科研通 3049625
什么是DOI,文献DOI怎么找? 1673639
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511