已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Open Catalyst 2020 (OC20) Dataset and Community Challenges

基线(sea) 计算机科学 催化作用 可再生能源 任务(项目管理) 过程(计算) 数据科学 化学 工程类 系统工程 生物化学 海洋学 操作系统 电气工程 地质学
作者
Lowik Chanussot,Abhishek Das,Siddharth Goyal,Thibaut Lavril,Muhammed Shuaibi,Morgane Rivière,Kevin Tran,Javier Heras‐Domingo,Caleb Ho,Weihua Hu,Aini Palizhati,Anuroop Sriram,Brandon M. Wood,Junwoong Yoon,Devi Parikh,C. Lawrence Zitnick,Zachary W. Ulissi
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:11 (10): 6059-6072 被引量:388
标识
DOI:10.1021/acscatal.0c04525
摘要

Catalyst discovery and optimization is key to solving many societal and energy challenges including solar fuels synthesis, long-term energy storage, and renewable fertilizer production. Despite considerable effort by the catalysis community to apply machine learning models to the computational catalyst discovery process, it remains an open challenge to build models that can generalize across both elemental compositions of surfaces and adsorbate identity/configurations, perhaps because datasets have been smaller in catalysis than related fields. To address this we developed the OC20 dataset, consisting of 1,281,040 Density Functional Theory (DFT) relaxations (~264,890,000 single point evaluations) across a wide swath of materials, surfaces, and adsorbates (nitrogen, carbon, and oxygen chemistries). We supplemented this dataset with randomly perturbed structures, short timescale molecular dynamics, and electronic structure analyses. The dataset comprises three central tasks indicative of day-to-day catalyst modeling and comes with pre-defined train/validation/test splits to facilitate direct comparisons with future model development efforts. We applied three state-of-the-art graph neural network models (CGCNN, SchNet, Dimenet++) to each of these tasks as baseline demonstrations for the community to build on. In almost every task, no upper limit on model size was identified, suggesting that even larger models are likely to improve on initial results. The dataset and baseline models are both provided as open resources, as well as a public leader board to encourage community contributions to solve these important tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
罗鑫圣发布了新的文献求助10
5秒前
5秒前
6秒前
orixero应助干净山柳采纳,获得10
7秒前
郑偏偏发布了新的文献求助10
8秒前
ComeOn发布了新的文献求助10
11秒前
科研通AI5应助玻尿酸采纳,获得10
11秒前
李孟佯完成签到 ,获得积分10
12秒前
15秒前
可爱的函函应助ComeOn采纳,获得10
16秒前
####完成签到 ,获得积分10
16秒前
17秒前
Lucas应助几秋采纳,获得10
19秒前
xiaoxiong发布了新的文献求助10
19秒前
lulu完成签到 ,获得积分10
23秒前
23秒前
zc关闭了zc文献求助
23秒前
干净山柳发布了新的文献求助10
23秒前
yangyl58完成签到,获得积分10
24秒前
岂曰无衣完成签到 ,获得积分10
24秒前
Rose_Yang完成签到 ,获得积分10
25秒前
25秒前
25秒前
Murphy完成签到,获得积分10
25秒前
斯文败类应助phobeeee采纳,获得50
27秒前
tianyue发布了新的文献求助10
28秒前
赛赛发布了新的文献求助10
28秒前
28秒前
科研通AI5应助xiaoxiong采纳,获得10
29秒前
LMM完成签到 ,获得积分10
29秒前
羊羊完成签到 ,获得积分10
31秒前
32秒前
fate0325发布了新的文献求助10
33秒前
tianyue完成签到,获得积分10
33秒前
锦鲤完成签到 ,获得积分10
33秒前
35秒前
36秒前
无花果应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787983
求助须知:如何正确求助?哪些是违规求助? 3333553
关于积分的说明 10262434
捐赠科研通 3049355
什么是DOI,文献DOI怎么找? 1673516
邀请新用户注册赠送积分活动 802042
科研通“疑难数据库(出版商)”最低求助积分说明 760475