A review of computer vision technologies for plant phenotyping

物候学 计算机科学 特质 分类 人工智能 数据科学 机器学习 生物 基因组学 生物化学 基因 基因组 程序设计语言
作者
Zhenbo Li,Ruohao Guo,Meng Li,Yaru Chen,Guangyao Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:176: 105672-105672 被引量:267
标识
DOI:10.1016/j.compag.2020.105672
摘要

Plant phenotype plays an important role in genetics, botany, and agronomy, while the currently popular methods for phenotypic trait measurement have some limitations in aspects of cost, performance, and space-time coverage. With the rapid development of imaging technology, computing power, and algorithms, computer vision has thoroughly revolutionized the plant phenotyping and is now a major tool for phenotypic analysis. Based on the above reasons, researchers are devoted to developing image-based plant phenotyping methods as a complementary or even alternative to the manual measurement. However, the use of computer vision technology to analyze plant phenotypic traits can be affected by many factors such as research environment, imaging system, research object, feature extraction, model selection, and so on. Currently, there is no review paper to compare and analyze these methods thoroughly. Therefore, this review introduces the typical plant phenotyping methods based on computer vision in detail, with their principle, applicable range, results, and comparison. This paper extensively reviews 200+ papers of plant phenotyping in the light of its technical evolution, spanning over twenty years (from 2000 to 2020). A number of topics have been covered in this paper, including imaging technologies, plant datasets, and state-of-the-art phenotyping methods. In this review, we categorize the plant phenotyping into two main groups: plant organ phenotyping and whole-plant phenotyping. Furthermore, for each group, we analyze each research of these groups and discuss the limitations of the current approaches and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
多余完成签到,获得积分10
2秒前
机灵的土豆完成签到,获得积分10
2秒前
奋斗小公主完成签到,获得积分10
3秒前
好好学习完成签到 ,获得积分10
4秒前
科研通AI5应助AZN采纳,获得10
5秒前
Bear发布了新的文献求助10
5秒前
故意的傲柏完成签到 ,获得积分10
6秒前
7秒前
小柒完成签到 ,获得积分10
8秒前
8秒前
8秒前
晴空完成签到,获得积分10
8秒前
西溪浅浅完成签到 ,获得积分10
9秒前
huihui完成签到 ,获得积分10
9秒前
CO2完成签到,获得积分10
9秒前
小白发布了新的文献求助10
9秒前
自觉的凛完成签到,获得积分10
10秒前
flymove完成签到,获得积分10
10秒前
lllllllllllllll完成签到,获得积分10
11秒前
11秒前
bluehand完成签到,获得积分10
12秒前
海阔天空发布了新的文献求助10
13秒前
太叔丹翠完成签到 ,获得积分10
15秒前
杨涵完成签到 ,获得积分10
17秒前
张可发布了新的文献求助10
17秒前
CipherSage应助红鲤采纳,获得10
18秒前
李木子完成签到 ,获得积分10
19秒前
Giroro_roro完成签到,获得积分10
21秒前
21秒前
转山转水转出了自我完成签到,获得积分10
21秒前
无限聋五完成签到,获得积分10
21秒前
Aurora完成签到 ,获得积分10
23秒前
ypres完成签到 ,获得积分10
24秒前
喏晨完成签到 ,获得积分10
24秒前
yhy完成签到,获得积分10
24秒前
温暖的皮皮虾完成签到,获得积分10
25秒前
wghz完成签到 ,获得积分20
25秒前
理想三寻完成签到,获得积分10
25秒前
标致冬日完成签到,获得积分10
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815941
求助须知:如何正确求助?哪些是违规求助? 3359450
关于积分的说明 10402612
捐赠科研通 3077262
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813693
科研通“疑难数据库(出版商)”最低求助积分说明 767743