Automated Segmentation and Morphological Analyses of Stockpile Aggregate Images using Deep Convolutional Neural Networks

库存 骨料(复合) 分割 人工智能 卷积神经网络 计算机科学 图像分割 模式识别(心理学) 计算机视觉 材料科学 复合材料 物理 核物理学
作者
Haohang Huang,Jiayi Luo,Erol Tutumluer,John M. Hart,Andrew J. Stolba
出处
期刊:Transportation Research Record [SAGE]
卷期号:2674 (10): 285-298 被引量:23
标识
DOI:10.1177/0361198120943887
摘要

Particle size and morphological/shape properties ensure the reliable and sustainable use of all aggregate skeleton materials placed as constructed layers in transportation applications. The composition and packing of these aggregate assemblies rely heavily on particle size and morphological properties, which affect layer strength, modulus, and deformation response under vehicular loading and therefore facilitate the quality assurance/quality control (QA/QC) process. Aggregate imaging systems developed to date for size and shape characterization, however, have primarily focused on measurement of separated or slightly contacting aggregate particles. Development of efficient computer vision algorithms is urgently needed for image-based evaluations of densely stacked (or stockpile) aggregates, which requires image segmentation of a stockpile for the size and morphological properties of individual particles. This paper presents an innovative approach for automated segmentation and morphological analyses of stockpile aggregate images based on deep learning techniques. A task-specific stockpile aggregate image dataset is established from images collected from various quarries in Illinois. Individual particles from the stockpile images are manually labeled on each image associated with particle locations and regions. A state-of-the-art object detection and segmentation framework called Mask R-CNN is then used to train the image segmentation kernel, which enables user-independent segmentation of stockpile aggregate images. The segmentation results show good agreement with ground-truth labeling and improve the efficiency of size and morphological analyses conducted on densely stacked and overlapping particle images. Based on the presented approach, stockpile aggregate image analysis promises to become an efficient and innovative application for field-scale and in-place evaluations of aggregate materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
FashionBoy应助负责的方盒采纳,获得10
1秒前
2秒前
moyu123发布了新的文献求助10
3秒前
jane发布了新的文献求助10
4秒前
5秒前
5秒前
阿易完成签到,获得积分20
6秒前
6秒前
研友_VZG7GZ应助浅呀呀呀采纳,获得10
6秒前
7秒前
Mint发布了新的文献求助10
7秒前
HhhhL发布了新的文献求助10
7秒前
xiaohongzz完成签到,获得积分10
8秒前
关键词发布了新的文献求助20
8秒前
科目三应助EE采纳,获得10
9秒前
10秒前
10秒前
wdccx完成签到,获得积分10
11秒前
11秒前
sherman发布了新的文献求助10
12秒前
级积极完成签到,获得积分10
12秒前
小C发布了新的文献求助10
12秒前
13秒前
四时长发布了新的文献求助10
13秒前
赘婿应助负责的方盒采纳,获得10
14秒前
称心雁菡发布了新的文献求助10
15秒前
踏雪完成签到,获得积分10
15秒前
15秒前
15秒前
謃河鷺起完成签到,获得积分10
16秒前
飞鱼完成签到,获得积分10
17秒前
wwwtw完成签到,获得积分10
18秒前
18秒前
18秒前
LHL发布了新的文献求助10
19秒前
19秒前
鲸1107完成签到,获得积分10
20秒前
帅气念真发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355086
求助须知:如何正确求助?哪些是违规求助? 4487060
关于积分的说明 13968836
捐赠科研通 4387749
什么是DOI,文献DOI怎么找? 2410553
邀请新用户注册赠送积分活动 1403023
关于科研通互助平台的介绍 1376743