Tools for the analysis of high-dimensional single-cell RNA sequencing data

工作流程 计算生物学 可视化 仿形(计算机编程) 数据挖掘 RNA序列 原始数据 数据科学 计算机科学 转录组 生物 基因 遗传学 基因表达 操作系统 数据库 程序设计语言
作者
Yan Wu,Kun Zhang
出处
期刊:Nature Reviews Nephrology [Nature Portfolio]
卷期号:16 (7): 408-421 被引量:104
标识
DOI:10.1038/s41581-020-0262-0
摘要

Breakthroughs in the development of high-throughput technologies for profiling transcriptomes at the single-cell level have helped biologists to understand the heterogeneity of cell populations, disease states and developmental lineages. However, these single-cell RNA sequencing (scRNA-seq) technologies generate an extraordinary amount of data, which creates analysis and interpretation challenges. Additionally, scRNA-seq datasets often contain technical sources of noise owing to incomplete RNA capture, PCR amplification biases and/or batch effects specific to the patient or sample. If not addressed, this technical noise can bias the analysis and interpretation of the data. In response to these challenges, a suite of computational tools has been developed to process, analyse and visualize scRNA-seq datasets. Although the specific steps of any given scRNA-seq analysis might differ depending on the biological questions being asked, a core workflow is used in most analyses. Typically, raw sequencing reads are processed into a gene expression matrix that is then normalized and scaled to remove technical noise. Next, cells are grouped according to similarities in their patterns of gene expression, which can be summarized in two or three dimensions for visualization on a scatterplot. These data can then be further analysed to provide an in-depth view of the cell types or developmental trajectories in the sample of interest. This Review provides the non-expert reader with an overview of the different steps involved in the analysis of single-cell RNA sequencing data. The authors also provide insight into the strengths and pitfalls of available analysis tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天下、应助鲨野博士采纳,获得10
刚刚
April发布了新的文献求助10
1秒前
Lucas应助bai采纳,获得10
1秒前
杨朝进发布了新的文献求助10
2秒前
2秒前
2秒前
anlikek发布了新的文献求助10
2秒前
小马甲应助认真的映雁采纳,获得10
2秒前
3秒前
酷波er应助莳柒采纳,获得30
4秒前
4秒前
灵巧的靳完成签到,获得积分10
5秒前
pluto应助内秀采纳,获得10
6秒前
李爱国应助伶俐草丛采纳,获得10
6秒前
酷波er应助鱼囧采纳,获得10
8秒前
无情老太完成签到 ,获得积分10
8秒前
lidianji122发布了新的文献求助10
9秒前
9秒前
哈基米德应助CHAI采纳,获得20
10秒前
真实的沛山完成签到,获得积分10
10秒前
11秒前
hxh完成签到 ,获得积分10
12秒前
天下、应助陌路采纳,获得10
12秒前
13秒前
13秒前
霸气映之发布了新的文献求助10
13秒前
13秒前
JamesPei应助杨朝进采纳,获得10
15秒前
科研通AI6应助lidianji122采纳,获得10
15秒前
15秒前
赘婿应助研友_LMBqkn采纳,获得10
17秒前
我是老大应助LEESO采纳,获得10
17秒前
Lin完成签到,获得积分10
17秒前
秦立昊发布了新的文献求助10
17秒前
酷波er应助的的采纳,获得10
17秒前
18秒前
bai发布了新的文献求助10
18秒前
武装大脑发布了新的文献求助10
19秒前
非而者厚应助小红花采纳,获得10
19秒前
科研通AI2S应助殷楷霖采纳,获得10
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342724
求助须知:如何正确求助?哪些是违规求助? 4478521
关于积分的说明 13939809
捐赠科研通 4375215
什么是DOI,文献DOI怎么找? 2404022
邀请新用户注册赠送积分活动 1396569
关于科研通互助平台的介绍 1368794