Multiobjective de novo drug design with recurrent neural networks and nondominated sorting

计算机科学 可扩展性 分类 人工神经网络 机器学习 人工智能 计算生物学 算法 生物 数据库
作者
Jacob Yasonik
出处
期刊:Journal of Cheminformatics [BioMed Central]
卷期号:12 (1) 被引量:78
标识
DOI:10.1186/s13321-020-00419-6
摘要

Abstract Research productivity in the pharmaceutical industry has declined significantly in recent decades, with higher costs, longer timelines, and lower success rates of drug candidates in clinical trials. This has prioritized the scalability and multiobjectivity of drug discovery and design. De novo drug design has emerged as a promising approach; molecules are generated from scratch, thus reducing the reliance on trial and error and premade molecular repositories. However, optimizing for molecular traits remains challenging, impeding the implementation of de novo methods. In this work, we propose a de novo approach capable of optimizing multiple traits collectively. A recurrent neural network was used to generate molecules which were then ranked based on multiple properties by a nondominated sorting algorithm. The best of the molecules generated were selected and used to fine-tune the recurrent neural network through transfer learning, creating a cycle that mimics the traditional design–synthesis–test cycle. We demonstrate the efficacy of this approach through a proof of concept, optimizing for constraints on molecular weight, octanol-water partition coefficient, the number of rotatable bonds, hydrogen bond donors, and hydrogen bond acceptors simultaneously. Analysis of the molecules generated after five iterations of the cycle revealed a 14-fold improvement in the quality of generated molecules, along with improvements to the accuracy of the recurrent neural network and the structural diversity of the molecules generated. This cycle notably does not require large amounts of training data nor any handwritten scoring functions. Altogether, this approach uniquely combines scalable generation with multiobjective optimization of molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mxx完成签到,获得积分20
刚刚
kbg990818完成签到 ,获得积分10
刚刚
淡然白安发布了新的文献求助10
1秒前
xzy998完成签到,获得积分0
1秒前
九卫完成签到 ,获得积分10
1秒前
5秒前
花景铭完成签到,获得积分10
5秒前
我是老大应助研友_89Nm7L采纳,获得50
6秒前
水门发布了新的文献求助30
10秒前
11秒前
鱿鱼炒黄瓜完成签到,获得积分10
12秒前
慕青应助水门采纳,获得30
15秒前
tfsn20完成签到,获得积分0
15秒前
西米完成签到 ,获得积分10
15秒前
tdtk发布了新的文献求助10
18秒前
miscell应助acadedog采纳,获得50
19秒前
mmyhn发布了新的文献求助10
19秒前
Owen应助bigheadear采纳,获得20
20秒前
always完成签到 ,获得积分10
23秒前
pipi发布了新的文献求助10
27秒前
黑布林大李子完成签到,获得积分0
28秒前
怕黑凤妖完成签到 ,获得积分10
33秒前
科研通AI5应助tdtk采纳,获得10
34秒前
郭泓嵩完成签到,获得积分10
34秒前
wanci应助pipi采纳,获得10
36秒前
37秒前
38秒前
斑比完成签到,获得积分10
38秒前
无奈曼云完成签到,获得积分10
39秒前
米奇完成签到 ,获得积分10
40秒前
草莓完成签到,获得积分20
40秒前
研友_nV2ROn完成签到,获得积分10
42秒前
mxx发布了新的文献求助30
43秒前
sss完成签到,获得积分20
43秒前
小半完成签到 ,获得积分10
43秒前
yinyue发布了新的文献求助10
44秒前
科研fw完成签到 ,获得积分10
44秒前
草莓发布了新的文献求助10
44秒前
46秒前
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323321
关于积分的说明 10213925
捐赠科研通 3038575
什么是DOI,文献DOI怎么找? 1667549
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290