Battery Fault Diagnosis for Electric Vehicles Based on Voltage Abnormality by Combining the Long Short-Term Memory Neural Network and the Equivalent Circuit Model

人工神经网络 热失控 稳健性(进化) 计算机科学 电池(电) 可靠性(半导体) 可靠性工程 断层(地质) 电压 工程类 汽车工程 人工智能 电气工程 量子力学 基因 物理 地质学 功率(物理) 地震学 化学 生物化学
作者
Da Li,Zhaosheng Zhang,Peng Liu,Zhenpo Wang,Lei Zhang
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 1303-1315 被引量:235
标识
DOI:10.1109/tpel.2020.3008194
摘要

Battery fault diagnosis is essential for ensuring safe and reliable operation of electric vehicles. In this article, a novel battery fault diagnosis method is presented by combining the long short-term memory recurrent neural network and the equivalent circuit model. The modified adaptive boosting method is utilized to improve diagnosis accuracy, and a prejudging model is employed to reduce computational time and improve diagnosis reliability. Considering the influence of the driver behavior on battery systems, the proposed scheme is able to achieve potential failure risk assessment and accordingly to issue early thermal runaway warning. A large volume of real-world operation data is acquired from the National Monitoring and Management Center for New Energy Vehicles in China to examine its robustness, reliability, and superiority. The verification results show that the proposed method can achieve accurate fault diagnosis for potential battery cell failure and precise locating of thermal runaway cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
KaK发布了新的文献求助10
1秒前
臭臭发布了新的文献求助10
2秒前
宁大小王子完成签到,获得积分10
4秒前
7秒前
李爱国应助SweetyTian采纳,获得30
8秒前
英俊的铭应助司空豁采纳,获得10
9秒前
曾梦发布了新的文献求助10
11秒前
脑洞疼应助xh采纳,获得10
11秒前
54小张完成签到,获得积分10
12秒前
HudaBala发布了新的文献求助10
12秒前
阿南完成签到 ,获得积分10
12秒前
共享精神应助KaK采纳,获得10
13秒前
15秒前
海德薇的笼子完成签到,获得积分10
16秒前
Haoxiang完成签到,获得积分10
16秒前
17秒前
香蕉觅云应助Tiam采纳,获得10
17秒前
科研通AI5应助Tiam采纳,获得10
17秒前
香蕉觅云应助Tiam采纳,获得10
17秒前
万能图书馆应助不懂采纳,获得10
17秒前
wanci应助Tiam采纳,获得10
18秒前
18秒前
18秒前
Lucas应助Tiam采纳,获得10
18秒前
无花果应助Tiam采纳,获得10
18秒前
18秒前
18秒前
ST完成签到,获得积分20
18秒前
20秒前
Haoxiang发布了新的文献求助10
21秒前
mm关闭了mm文献求助
21秒前
鸭梨完成签到 ,获得积分10
22秒前
22秒前
Jane完成签到,获得积分10
23秒前
23秒前
ST发布了新的文献求助30
23秒前
科研通AI5应助Aliya采纳,获得10
26秒前
huang发布了新的文献求助10
26秒前
酢浆草小熊完成签到 ,获得积分10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
Effects of Receptive Music Therapy Combined with Virtual Reality on Prevalent Symptoms in Patients with Advanced Cancer 282
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811261
求助须知:如何正确求助?哪些是违规求助? 3355666
关于积分的说明 10377085
捐赠科研通 3072462
什么是DOI,文献DOI怎么找? 1687583
邀请新用户注册赠送积分活动 811691
科研通“疑难数据库(出版商)”最低求助积分说明 766741