Fluorescent labeling of chitosan for use in non-invasive monitoring of degradation in tissue engineering

壳聚糖 体内 生物材料 荧光团 生物医学工程 化学 生物物理学 荧光 体外 组织工程 荧光显微镜 共焦显微镜 材料科学 生物化学 细胞生物学 医学 生物技术 生物 物理 量子力学
作者
Cassilda Cunha-Reis,Alicia J. El Haj,Xuebin Yang,Ying Yang
出处
期刊:Journal of Tissue Engineering and Regenerative Medicine [Wiley]
卷期号:7 (1): 39-50 被引量:42
标识
DOI:10.1002/term.494
摘要

Journal of Tissue Engineering and Regenerative MedicineVolume 7, Issue 1 p. 39-50 Research Article Fluorescent labeling of chitosan for use in non-invasive monitoring of degradation in tissue engineering Cassilda Cunha-Reis, Cassilda Cunha-Reis Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UKSearch for more papers by this authorAlicia J. El Haj, Corresponding Author Alicia J. El Haj Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UKProfessor Alicia J. El Haj, Institute for Science and Technology in Medicine, School of Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB, UK. E-mail: [email protected]Search for more papers by this authorXuebin Yang, Xuebin Yang Department of Oral biology, University of Leeds, Leeds, LS2 9 LU UKSearch for more papers by this authorYing Yang, Ying Yang Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UKSearch for more papers by this author Cassilda Cunha-Reis, Cassilda Cunha-Reis Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UKSearch for more papers by this authorAlicia J. El Haj, Corresponding Author Alicia J. El Haj Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UKProfessor Alicia J. El Haj, Institute for Science and Technology in Medicine, School of Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB, UK. E-mail: [email protected]Search for more papers by this authorXuebin Yang, Xuebin Yang Department of Oral biology, University of Leeds, Leeds, LS2 9 LU UKSearch for more papers by this authorYing Yang, Ying Yang Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UKSearch for more papers by this author First published: 28 November 2011 https://doi.org/10.1002/term.494Citations: 34Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract The establishment of non-invasive analytical tools for assessing the in-situ use of biomaterials for surgical implants or scaffolds in tissue engineering and polymer-based therapies is fundamental. This study established a method for fluorescent tracking of the degradation of a chitosan membrane scaffold for use in vitro in bioreactors and ultimately in vivo. The basis of this tracking system is a fluorescence emitting biomaterial obtained by covalent binding of the fluorophore tetramethylrhodamine isothiocyanate (TRITC) onto the backbone of chitosan. Using confocal microscopy, this study quantitated the reductions in fluorescence intensity of the membrane and correlated these decreases with weight loss during polymer breakdown, thereby providing a technique for non-destructively assessing the extent of degradation of chitosan materials over time in vitro. Using multispectral imaging in a mouse model, the study assessed the degradation profile of the fluorophore-labeled biomaterial in vivo in real time and identified the dispersing pathway of the chitosan membrane degradation products in vivo. The results revealed that TRITC conjugated chitosan was biocompatible and supported bone cell growth. The changes in fluorescence intensity correlated well with weight loss up to 16 weeks of in vitro culture and could be monitored over two weeks in vivo. Copyright © 2011 John Wiley & Sons, Ltd. References Agnihotri SA, Kulkarni VD, Kulkarni AR, et al. 2006; Degradation of chitosan and chemically modified chitosan by viscosity measurements. J Appl Polym Sci 102: 3255– 3258. Bingaman S, Huxley VH, Rumbaut RE. 2003; Fluorescent dyes modify properties of proteins used in microvascular research. Microcirculation 10: 221– 231. Bohmer RM, Scharf E, Assoian RK. 1996; Cytoskeletal integrity is required throughout the mitogen stimulation phase of the cell cycle and mediates the anchorage-dependent expression of cyclin D1. Mol Biol Cell 7: 101– 111. Boucard N, Viton C, Agay D, et al. 2007; The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 28: 3478– 3488. Capek M, Janacek J, Kubinova L. 2006; Methods for compensation of the light attenuation with depth of images captured by a confocal microscope. Microsc Res Tech 69: 624– 635. Cesaro SN. 1998; FTIR study of a silver-thiourea complex generated in argon and nitrogen cryogenic matrices. Vib Spectrosc 16: 5. Cho H, An J. 2006; The effect of epsilon-caproyl/D,L-lactyl unit composition on the hydrolytic degradation of poly(D,L-lactide-ran-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-ran-epsilon-caprolactone). Biomaterials 27: 544– 552. Dhanasingh S, Nallaperumal SK. 2010; Chitosan/Casein Microparticles: Preparation, Characterization and Drug Release Studies. International Journal of Engineering and Applied Sciences 6: 5– 11. Dunn KW, Mayor S, Myers JN, et al. 1994; Applications of ratio fluorescence microscopy in the study of cell physiology. FASEB J 8: 573– 582. Feng J, Zhao L, Yu Q. 2004; Receptor-mediated stimulatory effect of oligochitosan in macrophages. Biochem Biophys Res Commun 317: 414– 420. Freier T, Koh HS, Kazazian K, et al. 2005; Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 26: 5872– 5878. Fu CC, Lee HY, Chen K, et al. 2007; Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci USA 104: 727– 732. Gao XH, Cui YY, Levenson RM, et al. 2004; In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22: 969– 976. Gareau DS, Bargo PR, Horton WA, et al. 2004; Confocal fluorescence spectroscopy of subcutaneous cartilage expressing green fluorescent protein versus cutaneous collagen autofluorescence. J Biomed Opt 9: 254– 258. Giunchedi P, Conti B, Scalia S, et al. 1998; In vitro degradation study of polyester microspheres by a new HPLC method for monomer release determination. J Control Release 56: 53– 62. Graves EE, Weissleder R, Ntziachristos V. 2004; Fluorescence molecular imaging of small animal tumor models. Curr Mol Med 4: 419– 430. Han X, Pan J. 2009; A model for simultaneous crystallisation and biodegradation of biodegradable polymers. Biomaterials 30: 423– 430. Hansen LK, Mooney DJ, Vacanti JP, et al. 1994; Integrin binding and cell spreading on extracellular matrix act at different points in the cell cycle to promote hepatocyte growth. Mol Biol Cell 5: 967– 975. Heinrichs M, Striepecke E, Bocking A. 1994; Quantitative analysis of the neu oncogene in normal and transformed epithelial breast cells by fluorescence in situ hybridization and laser scanning microscopy. Anal Quant Cytol Histol 16: 233– 239. Hermanson GT. 2008; Bioconjugate Techniques, Second Edition. Elsevier Inc.: London. Jung C, Müller BK, Lamb DC, et al. 2006; A new photostable terrylene diimide dye for applications in single molecule studies and membrane labeling. J Am Chem Soc 128: 5283– 5291. Langer R, Vacanti JP. 1993; Tissue engineering. Science 260: 920– 926. van Lenthe GH, Hagenmüller H, Bohner M, et al. 2007; Non-destructive micro-computed tomography for biological imaging and quantification of scaffold-bone interaction in vivo. Biomaterials 28: 2479– 2490. Loo JS, Ooi CP, Boey FY. 2005; Degradation of poly(lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by electron beam radiation. Biomaterials 26: 1359– 1367. López-Pérez PM, Marques AP, da Silva RMP, et al. 2007; Effect of chitosan membrane surface modification via plasma induced polymerization on the adhesion of osteoblast-like cells. J Mater Chem 17: 4064– 4071. Luedtke MA, Papazoglou E, Neidrauer M, et al. 2009; Wavelength effects on contrast observed with reflectance in vivo confocabl laser scanning microscopy. Skin Res Technol 15: 482– 488. Luna SM, Silva SS, Gomez ME, et al. 2011; Cell adhesion and proliferation onto chitosan-based membranes treated by plasma surface modification. J Biomater Appl 26(1): 101– 116. Marois Y, Zhang Z, Vert M, et al. 2000; Mechanism and rate of degradation of polyhydroxyoctanoate films in aqueous media: A long-term in vitro study. J Biomed Mater Res 49: 216– 224. Medintz IL, Uyeda HT, Goldman, et al. 2005; Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4: 435– 446. Meyer LE, Otberg N, Sterry W, et al. 2006; In vivo confocal scanning laser microscopy: comparison of the reflectance and fluorescence mode by imaging human skin. J Biomed Opt 11: 044012. Model MA, Healy KE. 2000; Quantification of the surface density of a fluorescent label with the optical microscope. J Biomed Mater Res 50: 90– 96. Montet X, Figueiredo JL, Alencar H, et al. 2007; Tomographic fluorescence imaging of tumor vascular volume in mice. Radiology 242: 751– 758. Murphy CL, Lever MJ. 2002; A ratiometric method of autofluorescence correction used for the quantification of Evans blue dye fluorescence in rabbit arterial tissues. Exp Physiol 87: 163– 170. Muzzarelli RA, Xia W, Tomasetti M, et al. 1995; Depolymerization of chitosan and substituted chitosans with the aid of a wheat germ lipase preparation. Enzyme Microb Technol 17: 541– 545. Nagata M, Kono Y, Sakai W, et al. 1999; Preparation and characterization of novel biodegradable optically active network polyesters from malic acid. Macromolecules 32: 7762– 7767. Naik S, Piwnica-Worms D. 2007; Real-time imaging of beta-catenin dynamics in cells and living mice. Proc Natl Acad Sci USA 104: 17465– 17470. Ntziachristos V, Bremer C, Graves EE, et al. 2002a; In vivo tomographic imaging of near-infrared fluorescent probes. Mol Imaging 1: 82– 88. Ntziachristos V, Schellenberger EA, Ripoll J, et al. 2004; Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Natl Acad Sci USA 101: 12294– 12299. Ntziachristos V, Tung CH, Bremer C, et al. 2002b; Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8: 757– 760. Park H, Park K, Kim D. 2006; Preparation and swelling behavior of chitosan-based superporous hydrogels for gastric retention application. J Biomed Mater Res A 76: 144– 150. Picart C. 2005; Controlled Degradability of Polysaccharide Multilayer Films In Vitro and In Vivo. Adv Funct Mater 15: 1771– 1780. Qiu Y, Zhang N, Kang Q, et al. 2009; Fabrication of permeable tubular constructs from chemically modified chitosan with enhanced antithrombogenic property. J Biomed Mater Res B Appl Biomater 90: 668– 678. Ren D, Yi H, Wang W, et al. 2005; The enzymatic degradation and swelling properties of chitosan matrices with diffeBrent degrees of N-acetylation. Carbohydr Res 340: 2403– 2410. Renouf-Glauser AC, Rose J, Farrar, et al. 2006; Comparison of the hydrolytic degradation and deformation properties of a PLLA-lauric acid based family of biomaterials. Biomacromolecules 7: 612– 617. Romijn HJ, Janszen AW, van Marle J. 1994; Quantitative immunofluorescence data suggest a permanently enhanced GAD67/GAD65 ratio in nerve endings in rat cerebral cortex damaged by early postnatal hypoxia-ischemia: a comparison between two computer-assisted procedures for quantification of confocal laser scanning microscopic immunofluorescence images. Brain Res 657: 245– 257. Wang JW, Hon MH. 2003; Preparation and characterization of pH sensitive sugar mediated (polyethylene glycol/chitosan) membrane. J Mater Sci Mater Med 14: 1079– 1088. Weissleder R, Ntziachristos V. 2003; Shedding light onto live molecular targets. Nat Med 9: 123– 128. Willerth SM, Arendas KJ, Gottlieb DI, et al. 2006; Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials 27: 5990– 6003. Wolbank S, Redl H. 2008; Non-invasive In Vivo Tracking of Fibrin by Fluorescence Imaging. Poster Presentation in 8th World Biomaterials Congress, Amsterdam, the Netherlands. Wolf M. 2008; Influence of matrigel on biodistribution studies in cancer research. Die Pharmazie 63: 43– 48. Yang Y, Yiu HH, El Haj AJ. 2005; On-line fluorescent monitoring of the degradation of polymeric scaffolds for tissue engineering. Analyst 130: 1502– 1506. Yang J, Zhang Y, Gautam S, et al. 2009; Development of aliphatic biodegradable photoluminescent polymers. Proc Natl Acad Sci USA 106: 10086– 10091. Zhang Q, Liu L, Zhou H, et al. 2000; pH-responsive swelling behavior of collagen complex materials. Artif Cells Blood Substit Immobil Biotechnol 28: 255– 262. Zhao W, Carreira EM. 2005; Conformationally restricted Aza-Bodipy: A highly fluorescent, stable, near-Infrared-absorbing dye. Angew Chem 117: 1705– 1707. Zipfel WR, Williams RM, Webb WW. 2003; Nonlinear magic: multiphoton microscopy in microscopy in the biosciences. Nat Biotech 21: 1369– 1377. Zucker RM, Jeffay SC. 2006; Confocal laser scanning microscopy of whole mouse ovaries: excellent morphology, apoptosis detection, and spectroscopy. Cytometry A 69: 930– 939. Citing Literature Supporting Information Supporting information may be found in the online version of this article. Filename Description term_494_sm_table.jpgJPEG image, 67.2 KB Supporting information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. Volume7, Issue1January 2013Pages 39-50 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧碧凡关注了科研通微信公众号
刚刚
不忘初心完成签到,获得积分10
刚刚
灼灼朗朗完成签到,获得积分10
1秒前
2秒前
cy关注了科研通微信公众号
3秒前
无语的凡梦完成签到 ,获得积分10
3秒前
小池同学完成签到,获得积分10
3秒前
xu完成签到,获得积分10
4秒前
CodeCraft应助羞涩的枫叶采纳,获得10
5秒前
6秒前
ardejiang发布了新的文献求助10
7秒前
一区top完成签到 ,获得积分10
7秒前
7秒前
上官若男应助yu采纳,获得10
8秒前
Lucas应助殷勤的学姐采纳,获得10
8秒前
轩哥发布了新的文献求助10
10秒前
康康XY完成签到 ,获得积分10
11秒前
老迟到的友菱给helloworld的求助进行了留言
12秒前
XuX发布了新的文献求助10
13秒前
cometx完成签到,获得积分10
13秒前
高山流水完成签到,获得积分10
14秒前
我是老大应助羞涩的枫叶采纳,获得10
14秒前
赘婿应助慰藉采纳,获得10
15秒前
15秒前
zhy完成签到,获得积分10
18秒前
18秒前
19秒前
bkagyin应助默默的天德采纳,获得30
20秒前
21秒前
李总要发财小苏发文章完成签到,获得积分10
21秒前
轩哥完成签到,获得积分20
21秒前
22秒前
23秒前
sheila完成签到,获得积分10
24秒前
許1111发布了新的文献求助10
24秒前
sofia完成签到,获得积分10
24秒前
LL完成签到,获得积分10
26秒前
YXChen发布了新的文献求助10
27秒前
27秒前
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785709
求助须知:如何正确求助?哪些是违规求助? 3331153
关于积分的说明 10250327
捐赠科研通 3046583
什么是DOI,文献DOI怎么找? 1672134
邀请新用户注册赠送积分活动 801008
科研通“疑难数据库(出版商)”最低求助积分说明 759979