检出限
化学
丙酮
分析物
探测器
分析化学(期刊)
电阻式触摸屏
选择性
工作温度
相对湿度
色谱法
催化作用
有机化学
光学
热力学
电气工程
物理
工程类
作者
Marco Righettoni,Antonio Tricoli,Sotiris E. Pratsinis
摘要
Acetone in the human breath is an important marker for noninvasive diagnosis of diabetes. Here, novel chemo-resistive detectors have been developed that allow rapid measurement of ultralow acetone concentrations (down to 20 ppb) with high signal-to-noise ratio in ideal (dry air) and realistic (up to 90% RH) conditions. The detector films consist of (highly sensitive) pure and Si-doped WO3 nanoparticles (10−13 nm in diameter) made in the gas phase and directly deposited onto interdigitated electrodes. Their sensing properties (selectivity, limit of detection, response, and recovery times) have been investigated as a function of operating temperature (325−500 °C), relative humidity (RH), and interfering analyte (ethanol or water vapor) concentration. It was found that Si-doping increases and stabilizes the acetone-selective ε-WO3 phase while increasing its thermal stability and, thus, results in superior sensing performance with an optimum at about 10 mol % Si content. Furthermore, increasing the operation temperature decreased the detector response to water vapor, and above 400 °C, it was (≤0.7) always below the threshold (10.6) for fake diabetes detection in ideal conditions. At this temperature and at 90% RH, healthy humans (≤900 ppb acetone) and diabetes patients (≥1800 ppb) can be clearly distinguished by a remarkable gap (40%) in sensor response. As a result, these solid state detectors may offer a portable and cost-effective alternative to more bulky systems for noninvasive diabetes detection by human breath analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI