Deep Learning Prediction of Adverse Drug Reactions in Drug Discovery Using Open TG–GATEs and FAERS Databases

机器学习 人工智能 计算机科学 背景(考古学) 不良事件报告系统 药物反应 深度学习 特征选择 药物发现 毒理基因组学 药品 数据挖掘 数据库 医学 生物信息学 药理学 化学 古生物学 生物化学 基因表达 基因 生物
作者
Attayeb Mohsen,Lokesh P. Tripathi,Kenji Mizuguchi
出处
期刊:Frontiers in drug discovery [Frontiers Media SA]
卷期号:1 被引量:31
标识
DOI:10.3389/fddsv.2021.768792
摘要

Machine learning techniques are being increasingly used in the analysis of clinical and omics data. This increase is primarily due to the advancements in Artificial intelligence (AI) and the build-up of health-related big data. In this paper we have aimed at estimating the likelihood of adverse drug reactions or events (ADRs) in the course of drug discovery using various machine learning methods. We have also described a novel machine learning-based framework for predicting the likelihood of ADRs. Our framework combines two distinct datasets, drug-induced gene expression profiles from Open TG–GATEs (Toxicogenomics Project–Genomics Assisted Toxicity Evaluation Systems) and ADR occurrence information from FAERS (FDA [Food and Drug Administration] Adverse Events Reporting System) database, and can be applied to many different ADRs. It incorporates data filtering and cleaning as well as feature selection and hyperparameters fine tuning. Using this framework with Deep Neural Networks (DNN), we built a total of 14 predictive models with a mean validation accuracy of 89.4%, indicating that our approach successfully and consistently predicted ADRs for a wide range of drugs. As case studies, we have investigated the performances of our prediction models in the context of Duodenal ulcer and Hepatitis fulminant, highlighting mechanistic insights into those ADRs. We have generated predictive models to help to assess the likelihood of ADRs in testing novel pharmaceutical compounds. We believe that our findings offer a promising approach for ADR prediction and will be useful for researchers in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
活力的采萱完成签到,获得积分10
1秒前
Tian111应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得20
3秒前
情怀应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
期期应助科研通管家采纳,获得10
3秒前
善学以致用应助lemonyu采纳,获得10
3秒前
4秒前
5秒前
Medecinchen发布了新的文献求助10
5秒前
zhzssaijj发布了新的文献求助10
6秒前
7秒前
SYLH应助自然元风采纳,获得10
8秒前
彦希完成签到 ,获得积分10
9秒前
10秒前
kk完成签到,获得积分10
10秒前
10秒前
小程同学发布了新的文献求助10
10秒前
16秒前
Aamidtou完成签到,获得积分10
18秒前
19秒前
20秒前
23秒前
XS_QI完成签到,获得积分10
23秒前
洁净山芙发布了新的文献求助10
25秒前
kk发布了新的文献求助10
26秒前
26秒前
南雪既白发布了新的文献求助10
26秒前
27秒前
28秒前
量子星尘发布了新的文献求助10
29秒前
xiaoliu发布了新的文献求助10
29秒前
29秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865193
求助须知:如何正确求助?哪些是违规求助? 3407463
关于积分的说明 10654630
捐赠科研通 3131554
什么是DOI,文献DOI怎么找? 1727175
邀请新用户注册赠送积分活动 832169
科研通“疑难数据库(出版商)”最低求助积分说明 780175