亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Yolk-shell manganese oxide nanostructures for lithium-ion battery anodes

材料科学 阳极 纳米技术 电解质 电池(电) 纳米结构 氧化物 锂(药物) 化学工程 电极 化学 冶金 功率(物理) 物理化学 内分泌学 工程类 物理 医学 量子力学
作者
Binbin Zhang,Yuzhu Li,Cheng Yang,Zhao Deng
出处
期刊:Chinese Science Bulletin 卷期号:64 (32): 3371-3377
标识
DOI:10.1360/tb-2019-0500
摘要

Nowadays, anodes based on graphitic materials are struggling with the ever-stringent requirements on lithium ion batteries (LIBs) in terms of energy and power densities, life-span, and deformability, from their extended applications such as automobiles, power grids and wearable electronics. As one of the promising alternates, transition metal oxides (TMOs) hold great perspectives. Unlike the lithium insertion mechanism of graphite, the lithiation/delithiation of TMOs is through redox conversion, imparting higher capacity and better safety. Among the numerous TMOs that have been extensively studied for LIB anodes, manganese oxides (MnO x ) are particularly attractive due to their high natural abundance, environmental benignity, tunable oxidation states, and low fabrication costs. However, as common to most of the TMOs, MnO x are essentially non-conductive and suffer from severe volume expansion upon lithiation, which greatly limit their rate capability and cycle performance. To overcome the above problems of MnO x (as well as other TMOs), many solutions have been attempted and can be majorly classified into two strategies: nanostructuring and carbon-compositing. The former based on developing diverse nanostructures brings in numerous benefits such as shortened ion diffusion path, enlarged electrochemically active surface, promoted electrolyte infiltration, as well as relieved lattice stress. The later based on hybridizing with various kinds of carbonaceous materials enables to greatly enhance electronic conductivity, buffer the cyclic volume fluctuation, and reinforce the electrode stability by providing structural supports for the active materials. Of the explored nanostructures, the yolk-shell structure has gained increasing attentions due to the prominent advantages in buffering the volume expansion and promoting the utilization of active materials. On one hand, when compared to solid nanoparticles the void spaces in the yolk-shell structure can accommodate the cyclic volume change during charge/discharge, effectively preventing the pulverization of active materials. On the other hand, in comparison to the hollow nanospheres and nanocages, the volumetric specific capacity of the yolk-shell structure is obviously superior. Nevertheless, despite of these apparent benefits, previous reported fabrications of yolk-shell nanostructures have been quite complex and typically involved multi-step synthesis with both high material and energy inputs. Besides, the structural stability and integrity of the yolk-shell structure itself pose an issue, in which the nanostructures might crack and collapse due to mechanical stress, especially in the prolonged charge/discharge process. Therefore, a rational design and facile fabrication of yolk-shell nanostructures for optimizing their utilization and stability in LIB anodes are highly desired for achieving the outstanding electrochemical and cycle performance. In this paper, a simple method involving polypyrrole-coated metal organic framework is adopted to synthesize manganese oxides with yolk-shell structure and use them as the anodes for lithium ion batteries. The as-prepared yolk-shell MnO x nanoparticles exhibit good specific capacity during charge/discharge, and demonstrate high specific capacities of 723, 651, 384 mAh g–1 at current densities of 0.1, 0.5 and 2 A g–1, respectively. Great stability and rate performance are also achieved with minimal capacity attenuation for over 200 cycles. Both the fabrication methodology and electrochemical understandings gained here for nanostructured manganese oxides can also extend to the other TMOs towards their ultimate implementation in high-performance LIBs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77完成签到 ,获得积分10
35秒前
1分钟前
小燕子完成签到 ,获得积分10
1分钟前
勤恳依霜发布了新的文献求助10
1分钟前
老阎应助勤恳依霜采纳,获得30
1分钟前
共享精神应助勤恳依霜采纳,获得10
1分钟前
kmzzy完成签到,获得积分10
2分钟前
kuoping完成签到,获得积分0
2分钟前
2分钟前
闪闪翼发布了新的文献求助10
2分钟前
2分钟前
wwe完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
西安浴日光能赵炜完成签到,获得积分10
3分钟前
Yoanna应助科研通管家采纳,获得20
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
嘻嘻完成签到,获得积分10
4分钟前
4分钟前
5分钟前
李爱国应助科研通管家采纳,获得10
5分钟前
慕青应助SiboN采纳,获得10
6分钟前
drirshad完成签到,获得积分10
6分钟前
numagok完成签到,获得积分10
7分钟前
ceeray23发布了新的文献求助10
8分钟前
陶醉的蜜蜂完成签到,获得积分10
8分钟前
vitamin完成签到 ,获得积分10
9分钟前
Yini应助Omni采纳,获得10
9分钟前
花落无声完成签到 ,获得积分10
10分钟前
瑾沫流年发布了新的文献求助100
10分钟前
Axs完成签到,获得积分10
10分钟前
科研通AI6应助阿米尔盼盼采纳,获得10
11分钟前
11分钟前
SiboN发布了新的文献求助10
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957939
求助须知:如何正确求助?哪些是违规求助? 4219149
关于积分的说明 13133252
捐赠科研通 4002241
什么是DOI,文献DOI怎么找? 2190252
邀请新用户注册赠送积分活动 1205006
关于科研通互助平台的介绍 1116625