Measurement accuracy enhancement with multi-event detection using the deep learning approach in Raman distributed temperature sensors

计算机科学 深度学习 人工智能 卷积神经网络 光时域反射计 噪音(视频) 降噪 循环神经网络 人工神经网络 模式识别(心理学) 图像分辨率 拉曼光谱 算法 光学 光纤 物理 光纤传感器 电信 图像(数学) 渐变折射率纤维
作者
Amitabha Datta,Vishnu Raj,Viswanathan Sankar,Sheetal Kalyani,Balaji Srinivasan
出处
期刊:Optics Express [The Optical Society]
卷期号:29 (17): 26745-26745 被引量:22
标识
DOI:10.1364/oe.433690
摘要

In this work, we present a novel deep learning framework for multi-event detection with enhanced measurement accuracy from the measured data of a Raman Optical Time Domain Reflectometer (Raman-OTDR). We demonstrate the utility of a deep learning-based approach by comparing the results from three popular neural networks, i.e. vanilla recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU). Before feeding the experimentally obtained data to the neural network, we sanitize our data through a correlation filtering operation to suppress outlier noise spikes. Based on experiments with Raman-OTDR traces consisting of single temperature event, we show that the GRU is able to provide better performance compared to RNN and LSTM models. Specifically, a bidirectional-GRU (bi-GRU) architecture is found to outperform other architectures owing to its use of data from both previous as well as later time steps. Although this feature is similar to that used recently in one dimension convolutional neural network (1D-CNN), the bi-GRU is found to be more effective in providing enhanced measurement accuracy while maintaining good spatial resolution. We also propose and demonstrate a threshold-based algorithm for accurate and fast estimation of multiple events. We demonstrate a 4x improvement in the spatial resolution compared to post-processing using conventional total variational denoising (TVD) filters, while the temperature accuracy is maintained within ± 0.5 o C of the set temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
姚磊发布了新的文献求助10
1秒前
斯文败类应助lvzhihao采纳,获得10
2秒前
jixia发布了新的文献求助10
3秒前
一二完成签到,获得积分10
3秒前
3秒前
谦让丹翠完成签到,获得积分10
4秒前
4秒前
4秒前
田様应助七年采纳,获得10
6秒前
6秒前
闪闪的乐蕊完成签到,获得积分10
7秒前
Friday驳回了慕青应助
7秒前
8秒前
9秒前
zzzz发布了新的文献求助30
9秒前
9秒前
10秒前
zsz发布了新的文献求助10
10秒前
落清欢发布了新的文献求助10
10秒前
冷傲涑发布了新的文献求助10
10秒前
11秒前
科研通AI6应助牧笛采纳,获得10
11秒前
Akim应助AMMMMM采纳,获得10
12秒前
12秒前
afterglow发布了新的文献求助10
12秒前
科研通AI6应助Hyp采纳,获得10
12秒前
彭于晏应助水木山朋采纳,获得10
12秒前
seeking发布了新的文献求助10
13秒前
知性的惜雪完成签到,获得积分10
14秒前
缥缈无色发布了新的文献求助10
14秒前
廉6666发布了新的文献求助10
15秒前
16秒前
16秒前
Ashley完成签到,获得积分10
16秒前
jam完成签到,获得积分10
16秒前
lvzhihao发布了新的文献求助10
17秒前
Jasper应助姚磊采纳,获得10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462674
求助须知:如何正确求助?哪些是违规求助? 4567376
关于积分的说明 14310095
捐赠科研通 4493273
什么是DOI,文献DOI怎么找? 2461518
邀请新用户注册赠送积分活动 1450559
关于科研通互助平台的介绍 1425885