Prediction of thermal fatigue life based on the microstructure of thermal barrier coating applied to single-crystal CMSX-4 considering stress ratio

材料科学 热障涂层 微观结构 热冲击 复合材料 有限元法 压力(语言学) 涂层 结构工程 语言学 工程类 哲学
作者
D.H. Kim,K.K. Kim,K.B. Park,Jungheum Yun,Chang-Sung Seok
出处
期刊:Ceramics International [Elsevier BV]
卷期号:47 (15): 21950-21958 被引量:3
标识
DOI:10.1016/j.ceramint.2021.04.213
摘要

Owing to the repeated operation and shutdown of gas turbines, the thermal barrier coating (TBC) used in these systems undergo thermal fatigue. In such environments, the TBCs fail due to the thermal stress generated at the thermally grown oxide (TGO) interface. As the failure of TBC poses a significant risk to such power generation systems, research combining the thermal fatigue test and the finite element method (FEM) for predicting the failure life of TBCs is being conducted actively. However, previous studies have neglected the compressive stress generated during the cooling stage in the thermal fatigue test. Moreover, variations in the fatigue life depending on the microstructure of the top coating also need to be considered. To this end, this paper proposes a method for predicting the fatigue life of TBCs with various microstructures by using the Goodman method. The influence of the microstructure of the top coating on thermal stress was evaluated using the FEM. The derived tensile stress and compressive stress were converted into a stress amplitude under a stress ratio of −1 by using the Goodman method. A coin-type TBC test specimen was prepared and subjected to a thermal fatigue test, in order to evaluate the durability of the specimen. A master diagram considering the microstructure and thermal shock of the top coating was obtained by applying the converted stress relationship to the results of the thermal fatigue test, and a fatigue life prediction equation was derived. Lastly, the validity of this prediction equation was verified by performing a thermal fatigue test on specimens featuring top coatings with different microstructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助静好采纳,获得10
1秒前
NexusExplorer应助zumri采纳,获得10
1秒前
zzp发布了新的文献求助30
1秒前
fd163c发布了新的文献求助10
1秒前
JamesPei应助quanbin采纳,获得10
1秒前
sdl发布了新的文献求助10
2秒前
2秒前
充电宝应助啛啛喳喳采纳,获得10
2秒前
华仔应助戴苑竹采纳,获得10
3秒前
renzhuo发布了新的文献求助10
3秒前
开心完成签到,获得积分10
3秒前
搜集达人应助神勇的天问采纳,获得10
3秒前
3秒前
咕咕发布了新的文献求助10
4秒前
4秒前
4秒前
天天玩发布了新的文献求助10
5秒前
小马甲应助major采纳,获得10
5秒前
aa完成签到,获得积分10
6秒前
大模型应助hhhh采纳,获得30
6秒前
天真若山完成签到,获得积分10
7秒前
李日辉发布了新的文献求助10
7秒前
麦子完成签到,获得积分10
7秒前
jennie完成签到 ,获得积分10
7秒前
Luyao发布了新的文献求助30
8秒前
Andy_111完成签到,获得积分10
8秒前
熠熠完成签到,获得积分10
8秒前
香蕉觅云应助聪慧鸭子采纳,获得10
8秒前
9秒前
蓝橙完成签到,获得积分10
9秒前
黛宝完成签到,获得积分10
9秒前
默11发布了新的文献求助10
9秒前
乐鱼完成签到,获得积分10
9秒前
科研牛马发布了新的文献求助10
9秒前
control完成签到,获得积分10
10秒前
zzp完成签到,获得积分10
10秒前
小马牛油发布了新的文献求助10
10秒前
fang完成签到,获得积分10
11秒前
11秒前
抹不掉的记忆完成签到,获得积分10
11秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820601
求助须知:如何正确求助?哪些是违规求助? 3363540
关于积分的说明 10423274
捐赠科研通 3081932
什么是DOI,文献DOI怎么找? 1695353
邀请新用户注册赠送积分活动 815060
科研通“疑难数据库(出版商)”最低求助积分说明 768819