Drug–target interaction predication via multi-channel graph neural networks

计算机科学 人工智能 药品 人工神经网络 理论计算机科学 图形 医学 药理学
作者
Yang Li,Guanyu Qiao,Keqi Wang,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:78
标识
DOI:10.1093/bib/bbab346
摘要

Abstract Drug–target interaction (DTI) is an important step in drug discovery. Although there are many methods for predicting drug targets, these methods have limitations in using discrete or manual feature representations. In recent years, deep learning methods have been used to predict DTIs to improve these defects. However, most of the existing deep learning methods lack the fusion of topological structure and semantic information in DPP representation learning process. Besides, when learning the DPP node representation in the DPP network, the different influences between neighboring nodes are ignored. In this paper, a new model DTI-MGNN based on multi-channel graph convolutional network and graph attention is proposed for DTI prediction. We use two independent graph attention networks to learn the different interactions between nodes for the topology graph and feature graph with different strengths. At the same time, we use a graph convolutional network with shared weight matrices to learn the common information of the two graphs. The DTI-MGNN model combines topological structure and semantic features to improve the representation learning ability of DPPs, and obtain the state-of-the-art results on public datasets. Specifically, DTI-MGNN has achieved a high accuracy in identifying DTIs (the area under the receiver operating characteristic curve is 0.9665).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
LaTeXer应助科研通管家采纳,获得30
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
1秒前
ME发布了新的文献求助10
2秒前
孝顺的尔竹关注了科研通微信公众号
2秒前
2秒前
小猪应助cy采纳,获得20
3秒前
3秒前
4秒前
阔达碧空发布了新的文献求助10
4秒前
4秒前
QQQQ完成签到,获得积分10
6秒前
7秒前
斯文弘文发布了新的文献求助20
7秒前
7秒前
mingyu完成签到,获得积分10
7秒前
hehe发布了新的文献求助10
7秒前
8秒前
8秒前
顾矜应助Woaimama724采纳,获得10
10秒前
小蘑菇应助luo采纳,获得10
11秒前
善学以致用应助张参采纳,获得10
11秒前
ME完成签到,获得积分20
11秒前
怡然涵双发布了新的文献求助10
11秒前
打打应助丑陋的名字采纳,获得10
12秒前
胡一刀发布了新的文献求助10
12秒前
机灵曼荷完成签到,获得积分10
14秒前
阿德里亚诺完成签到,获得积分10
14秒前
derrickZ发布了新的文献求助20
14秒前
笑珊发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
Ohhruby发布了新的文献求助10
16秒前
Elsa完成签到,获得积分10
19秒前
万能图书馆应助liang采纳,获得10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4750657
求助须知:如何正确求助?哪些是违规求助? 4096600
关于积分的说明 12674506
捐赠科研通 3809133
什么是DOI,文献DOI怎么找? 2102934
邀请新用户注册赠送积分活动 1128210
关于科研通互助平台的介绍 1004922